Ссылки Обмен ссылками Новости сайта Поиск |
«Вслед за Чарльзом Дарвином Шелдрейк предлагает самостоятельно осуществить семь экспериментов, направленных на изучение необъяснимых природных явлений... В книге можно найти теоретическое обоснование предлагаемых опытов, методику сбора информации, пути дальнейшего развития исследований, а также практические советы читателям, пожелавшим принять участие в этой исследовательской программе».
«Сайенс Ньюс»
«Эта книга доставляет огромное удовольствие. К тому же она представляет немалую научную ценность как интересный опыт в философии науки и, возможно, как неожиданный и глубокий взгляд на привычный материальный мир».
«Ньюс Сайентист»
Шелдрейк Р.
Семь экспериментов, которые изменят мир: Самоучитель передовой науки / Пер. англ. А. Ростовцева — М.: ООО Издательский дом «София», 2004. — 432 с.
В середине 80-х годов XX века английский биолог Руперт Шелдрейк выдвинул революционную теорию морфогенетических полей. Согласно его гипотезе, все природные системы — от кристаллов до растений и животных, включая человека и весь человеческий социум, — обладают коллективной памятью, определяющей их поведение, строение и внешние формы. В своем новом бестселлере Шелдрейк продолжает развивать свои идеи, но в еще более доступной и увлекательной форме. Общность сознания, лежащая в основе его теории морфогенетических полей, помогает ему не только объяснять различные паранормальные явления, такие, как телепатия или телекинез, но и вовлекать читателя в увлекательные эксперименты, связывающие воедино теорию с практикой.
СОДЕРЖАНИЕ
Предисловие ко второму изданию
Общее введение. Почему для решения сложных вопросов достаточно простых исследований
ЧАСТЬ ПЕРВАЯ. Необыкновенные способности животных
Введение к первой части. Почему на загадочные способности животных не обращают внимания
Глава 1. Как животные предчувствуют возвращение хозяев
Глава 2. Как голуби находят дорогу к дому
ЧАСТЬ ВТОРАЯ. Безграничный разум
Введение ко второй части. Разум: ограниченный и безграничный
Глава 4. Ощущение пристального взгляда
Глава 5. Реальность ампутированных конечностей
Введение к третьей части. Иллюзии объективности
Глава 6. Непостоянство «фундаментальных констант»
Глава 7. Эффект ожиданий экспериментатора
Приложение ко второму изданию. Новые данные по семи экспериментам
МОИМ ДЕТЯМ
ПРЕДИСЛОВИЕ КО ВТОРОМУ ИЗДАНИЮ
Эта книга впервые вышла в свет в 1994 г. и вызвала огромный общественный интерес — особенно та ее часть, где рассматривается удивительная способность домашних животных предчувствовать возвращение хозяев. Мои читатели, а также те, кто узнал о моих исследованиях из средств массовой информации, прислали мне сотни писем, в которых сообщали о необычном поведении своих собак, кошек, лошадей, попугаев и других домашних животных, выходившем за рамки современных научных представлений. Из более чем 3500 сообщений была составлена отдельная база данных, которая теперь хранится в моем компьютере.
С 1994 г. я координирую обширную программу исследований, касающихся необъяснимых способностей животных. Суть этих исследований изложена в первой части книги. Сотни экспериментов с видеонаблюдением показали, что собаки действительно могут предчувствовать возвращение хозяев домой, и, вероятно, эта способность имеет телепатическую природу.
Мы с коллегами опросили десятки людей, обладающих профессиональным опытом наблюдения за поведением животных — дрессировщиков, владельцев собачьих питомников и конюшен, смотрителей зоопарков, полицейских-кинологов, — а также слепых, пользующихся помощью собак-поводырей. Кроме того, мы опросили сотни произвольно выбранных владельцев домашних животных в Великобритании и США, выясняя, насколько распространены необычные способности у собак, кошек, других домашних животных. Исследования показали, что «необъяснимое» поведение свойственно многим животным. Большую часть полученных результатов я рассмотрел в книге «Собаки, предчувствующие возвращение хозяев, и другие необъяснимые способности животных» («Dogs That Know When Their Owners Are Coming Home, and Other Unexplained Powers of Animals»), впервые изданной в 1999 г. Кроме того, много статей на эту тему мы с коллегами опубликовали в различных научных журналах. Некоторые факты из этих статей приводятся в приложении к настоящему изданию.
Хотя наибольший интерес у читателей вызвала первая глава, в которой рассказывается о домашних животных, мы с коллегами получили много новых данных и в других областях исследований, обозначенных в первом издании. В приложении к нынешнему изданию приводятся все полученные на данный момент результаты и ссылки на публикации в научных журналах.
Наиболее популярной областью исследований оказалась способность человека ощущать пристальный взгляд. Условия эксперимента по выявлению этой способности подробно описаны в четвертой главе. По предложенной мною схеме проводились десятки тысяч опытов, многие из них — в школах и колледжах. Были получены положительные результаты, обладавшие весьма высокой статистической значимостью.
В первом издании я просил читателей присылать мне результаты собственных экспериментов, и с тех пор постоянно получаю от вас новую информацию по исследуемым темам. Теперь со мной можно связаться и по Интернету, прислав сообщение на сайт www.sheldrake.org, за создание которого я очень признателен Мэтью Клэппу. У посетителей сайта есть возможность сопоставить различные мнения и обсудить результаты исследований, опубликованных в данной книге. После выхода первого издания я улучшил методику большинства предлагаемых экспериментов. Описание новых методов приводится в приложении, и я надеюсь, что на сайте появятся результаты исследований, проведенных читателями.
Хочу выразить благодарность за финансовую поддержку Бену Уэбстеру из Торонто, Институту исследований разума, Фонду Лайфбриджа в Нью-Йорке и Фонду Биала в Португалии.
Еще с детства, с тех пор, как я завел почтовых голубей, меня поражали некоторые удивительные явления природы, о которых я расскажу в этой книге. За двадцать пять лет научной работы я в полной мере оценил значимость эксперимента. Я убедился, что с помощью правильно спланированного опыта природе можно задать любой вопрос и получить ответ.
Меня всегда интересовало, каким образом можно провести фундаментальное научное исследование с минимальными финансовыми затратами. Обучаясь в Кембридже, я постоянно встречал проявления так называемой традиции «бечевки и сургуча» в британской науке, а впоследствии сам принял участие в такой научной деятельности. Работая научным сотрудником Королевского общества, я вел исследования на факультете биохимии Кембриджского университета вместе с ныне покойным Робином Хиллом, опытнейшим специалистом в области фотосинтеза. Его расходы на непрерывно проводимые эксперименты были ниже, чем сумма, предусмотренная бюджетом университета для опытов одного бакалавра.
В Индии, в течение пяти лет проводя исследования в области сельского хозяйства, я познакомился с изобретенным индийскими учеными весьма рациональным способом проведения полевых испытаний с минимальными финансовыми затратами. Я сам освоил его, работая в международном институте неподалеку от Хайдарабада. Суть состояла в том, что к сотрудничеству привлекались, как правило, местные крестьяне, и благодаря этому исследования оказывались очень продуктивными и недорогими. Таким образом, к примеру, мы с коллегами создали новую высокоурожайную систему для выращивания голубиного гороха, которая ныне широко применяется индийскими крестьянами и вносит немалый вклад в обеспечение страны продовольствием.
Заинтересовавшись гипотезой причинности формообразования, впервые изложенной мною в книге «Новая наука о жизни» («A New Science of Life», 1981), я стал использовать экспериментальные методы для исследования необычных научных явлений, в частности, формирования привычек у животных за счет морфического резонанса. В книге «Присутствие прошлого» («The Presence of the Past», 1988) я привожу результаты своих ранних экспериментов по проверке этой гипотезы. С тех пор в различных университетах Европы, США и Австралии было проведено много новых опытов. Результаты оказались обнадеживающими, и о них я расскажу в новой книге. На меня произвела большое впечатление изящная простота экспериментальных методик, предлагаемых различными исследователями, в числе которых были и студенты. Эти методики стали вдохновляющим примером долговременных научных изысканий, не требующих крупных финансовых затрат.
Идея этой книги родилась у меня в Лондоне в 1989 г. Меня пригласили на встречу с руководством Института исследований разума, центр которого базируется в Калифорнии. Разрабатывался проект исследований, касающихся природы причинности, и мне предложили высказать свое мнение по этому вопросу, прежде всего в свете моей гипотезы о причинности формообразования. По ходу встречи мы обсуждали программу будущих экспериментов. Меня спросили, что бы я предпринял, если бы, будучи членом руководства института, захотел поддержать интересное и перспективное исследование с ограниченным финансированием. Я представил список простых и недорогих экспериментов, которые могли бы изменить представление о мире, и присоединился к программе исследований.
В тот вечер за ужином в клубе «Гаррик» несколько членов руководства, один из которых был сенатором США, посоветовали мне написать книгу, посвященную этой теме. Предложение было неожиданным, но чем дольше я обдумывал его, тем интереснее казалась мне эта идея. Я рассмотрел множество вариантов простых опытов, но в книге решил описать только семь из них. Итак, перед вами не просто книга, а программа научных исследований, открытая для всех, кто захочет принять в ней участие.
Осуществление этой идеи стало возможным благодаря материальной поддержке Института исследований разума, в руководство которого я вхожу. Этот же институт предложил свою помощь в координации наших исследований в Северной Америке. Благодаря великодушию госпожи Элизабет Буттенберг дополнительная финансовая поддержка этому проекту была оказана Фондом Швейсфурта в Мюнхене.
Я хотел бы выразить признательность всем, кто помог мне информацией, советами и рекомендациями в различных областях исследований. Назову их по именам: Ральф Абрахам, Сперри Эндрюс, Сьюзан Блэкмор, Джул Кэшфорд, Кристофер Кларк, Ларри Досси, Линди Дафферин и Эйва, Дороти Эммет, Сьютберт Эртел, Уинстон Франклин, Карл Гейгер, Брайан Гудвин, Дэвид Харт, Сандра Хофтон, Николас Хамфри, Томас Херли, Фрэнсис Хаксли, ныне покойный Брайан Инглис, Рик Инграски, Стенли Криппнер, Энтони Лод, Дэвид Лоример, Теренс Маккена, Дикси Макрейнольдс, Вим Нибур, ныне покойный Бренден О'Риган, Брайан Петли, Робби Робсон, Роберт Розенталь, Мириам Ротшильд, Роберт Шварц, Джеймс Серпелл, Джордж Серк, Деннис Стиллингс, Луис ван Гастерен, Рекс Уиллер и моя жена Джилл Перс. Много ценных сведений — преимущественно относящихся к поведению домашних животных, способности голубей находить дорогу домой, фантомным ощущениям и способности чувствовать пристальный взгляд— я получил от различных информантов, экспериментаторов и корреспондентов. Таких людей было более трехсот, и я глубоко благодарен им всем за бескорыстную помощь.
Хотелось бы поблагодарить и тех, кто в процессе подготовки рукописи частично или целиком прочел мою книгу и поделился своими замечаниями. Среди них Ральф Абрахам, Кристофер Кларк, Сьютберт Эртель, Николас Хамфри, Френсис Хаксли, Брайан Петли, Кит Скотт, а также мои редакторы Кристофер Поттер и Эндрю Коулмен.
Я благодарю Кристофера Шелдрейка, подготовившего для моей книги иллюстрации №№ 5, 6, 7 и 8. Кроме того, я признателен всем, кто позволил мне использовать в качестве иллюстраций свои работы. Это Питер Беннет (ил. 1), Рик Осмен (ил. 2 и 3), Джилл Перс (ил. 4), издательство «Осборн Паблишинг» (ил. 96) и Стенли Криппер (ил. 12).
ПОЧЕМУ ДЛЯ РЕШЕНИЯ СЛОЖНЫХ ВОПРОСОВ ДОСТАТОЧНО ПРОСТЫХ ИССЛЕДОВАНИЙ
В этой книге я предлагаю провести семь экспериментов, которые могли бы изменить наше представление об окружающем мире. Эти эксперименты способны вывести нас за пределы современного научного познания и представить мир под таким углом зрения, под каким он еще не рассматривался. В случае успеха любой из этих экспериментов откроет новые захватывающие перспективы, а весь комплекс исследований в целом произведет переворот в нашем понимании действительности и собственной природы. В этой книге
Цель этой книги не только в популяризации научных знаний, но и в том, чтобы сам процесс научных исследований стал более доступным, публичным, открытым для любого, кто захочет принять в нем участие, чтобы истина перестала быть монополией академических авторитетов. Предлагаемые эксперименты требуют минимальных затрат, а некоторые из них и вовсе обойдутся бесплатно; в принципе провести их может любой, кто этого захочет.
Наука в наши дни сделалась очень консервативной. Она развивается в рамках уже сложившейся системы взглядов, из-за чего многие основополагающие проблемы игнорируются, объявляются «запретными» или попросту ненаучными. Наука обходит так называемые аномальные вопросы, не вписывающиеся в привычные схемы. К примеру, навигационные способности животных, которые ежегодно мигрируют, как бабочки данаиды, или всегда находят путь к дому, как почтовые голуби, до сих пор остаются загадкой. Современная наука так и не смогла найти им объяснения, и, скорее всего, не сможет никогда. Считается, что исследования в такой области имеют меньшую научную ценность, чем, к примеру, задачи молекулярной биологии, и лишь немногие ученые пытаются этим заниматься. А ведь относительно несложные исследования, посвященные способности животных находить дорогу к дому, могли бы изменить наше понимание природы животных и в то же время привести к открытию сил, полей или видов воздействия, до сих пор не известных физикам. Прочитав книгу, вы сможете убедиться, что расходы на такие исследования весьма незначительны и их могли бы проводить многие люди, не являющиеся учеными по профессии. Нельзя не признать, что голубей лучше всех знают именно те, кто ими увлекается, а таких любителей в мире более пяти миллионов.
В прошлом научные исследования проводились по большей части дилетантами, то есть теми, кто посвящал себя науке, не будучи профессиональным ученым. К примеру, Чарльз Дарвин никогда не занимал никакой академической должности, он занимался наукой у себя дома в Кенте, изучал усоногих рачков, писал статьи, держал голубей и экспериментировал в саду вместе с сыном Френсисом. С конца XIX в. на первое место в науке вышли профессионалы[1], а с 50-х гг. XX в. практически все научные изыскания проводятся только узкими специалистами. В наши дни независимых ученых можно буквально пересчитать по пальцам. Самый известный из них, конечно же, Джеймс Лавлок. Основной смысл его «гипотезы Геи» сводится к тому, что Земля — живой организм. Любители-натуралисты и энтузиасты-изобретатели не исчезли, но теперь их никто не воспринимает всерьез.
Тем не менее в наши дни исследовать явления, игнорируемые академической наукой, становится намного проще, чем мы привыкли считать. Наука вновь вступает в ту фазу, когда наиболее значимые открытия могут сделать именно непрофессионалы — вне зависимости от уровня своих познаний в той или иной области. Общий образовательный уровень сейчас высок как никогда прежде, и миллионы людей обладают достаточной подготовкой в той или иной сфере знаний. Электронно-вычислительные машины, которые еще недавно были доступны только крупным научным организациям, теперь используются едва ли не в каждой семье. Появилось больше времени для досуга. Сотни тысяч студентов занимаются лабораторными исследованиями в качестве учебной практики, и я уверен, что многим из них хотелось бы сделать настоящее научное открытие. Появилось множество информационных сетей и сообществ, объединяющих энтузиастов-исследователей, которые работают как в традиционных сферах академической науки, так и за ее пределами. Все это открывает большие возможности для взаимодействия между любителями и профессионалами в науке, первые из которых обладают практически неограниченной свободой выбора в новых областях исследования, а вторые обеспечивают более строгий подход, благодаря чему новые открытия пополняют уже накопленный запас академических знаний.
Как и в предыдущие периоды бурного роста, наука в наши дни может обогащаться за счет парадоксальных идей, выдвинутых непрофессионалами. Исследователя вдохновляет любознательность, стремление понять природу вещей. Именно это стремление многих привлекает в академическую науку, но впоследствии нередко угасает из-за формализма, свойственного научной среде. К счастью, у любителей оно сохраняется, а у многих из них со временем даже возрастает.
Вероятно, у большинства читателей не так уж много свободного времени и далеко не у всех возникнет желание проводить предложенные мною опыты. Тем не менее сама возможность поучаствовать в научной работе вдохновляет и привлекает к исследованиям многих людей независимо от того, обладают ли они фундаментальными научными познаниями. Кроме того, в условиях конкретного эксперимента дискуссия по исследуемой теме оживляется, а поставленные вопросы прорисовываются более отчетливо.
В области естественных наук время от времени совершаются открытия, которые опровергают давно устоявшиеся теории[2]. Все эти открытия основываются на экспериментальных данных. Могут меняться научные воззрения, но остается неизменным сам принцип построения гипотезы на основе конкретного опыта. Многое в современной науке меня не устраивает, но в важности эксперимента я глубоко убежден, иначе не стал бы писать эту книгу.
Экспериментальный метод не следует считать чем-то уникальным или таинственным. Он лишь одна из форм того процесса, который непрерывно протекает в человеческом обществе, да и в мире животных, — процесса обучения на опыте. Слово «эксперимент» происходит от латинского experire («пробовать, испытывать»), как и слова «эксперт», «экспертиза»; а слово «эмпирический» происходит от греческого emperios, означавшего и «опыт», и «эксперимент».
Научные эксперименты планируются таким образом, чтобы получить правильный ответ на поставленный вопрос. По своей сути эксперимент — это вопрос, который мы задаем природе. Опыт может стать судьей в споре между двумя гипотезами по одному вопросу, так как эмпирические данные — это язык, посредством которого с нами общается окружающий мир. Эксперимент можно назвать современным оракулом. Точно так же, как в прошлом шаманы, гадалки, мудрецы, провидцы, пророки и пророчицы, жрецы и жрицы, колдуны и маги истолковывали знамения, в наши дни ученые стремятся найти объяснение экспериментальным данным.
Научные гипотезы проверяются опытом, ценность гипотезы определяется многообразием эмпирических данных, которые она способна объяснить. Только эксперимент может расширить наше понимание законов природы, только на основе эмпирических результатов могут быть созданы новые теории, только экспериментальная проверка может обеспечить научный прогресс. Вера в могущество эксперимента лежит в основе науки, ее разделяют практически все исследователи, в том числе я сам.
Глобальные научные вопросы — проблемы космологии, квантовой теории, теории хаоса, эволюции, сознания — вызывают сегодня небывалый общественный интерес, и в то же время общество как никогда далеко от официальной науки. Этой книгой я хотел бы привлечь внимание к тем областям исследования, которыми пренебрегает академическая наука и в которых относительно простые эксперименты обещают множество новейших данных, предоставляя уникальную возможность сделать собственное открытие. Недорогие опыты обеспечивают широкое поле деятельности для непрофессионалов и в то же время открывают новые перспективы профессиональным ученым, располагающим лишь ограниченным финансированием, а также студентам, стремящимся как можно раньше включиться в многообещающие исследовательские программы.
В Великобритании исследования по рассматриваемым в книге темам координирует Сеть научных и медицинских изысканий, в США этим занимается Институт исследований разума (адрес приводится в тексте). Координационные центры созданы также во Франции, Германии, Нидерландах и Испании. Все эти учреждения помогают поддерживать контакты между людьми в разных странах, дают рекомендации по методике экспериментов и статистическому анализу данных, рассылают информационные бюллетени, сообщая о последних достижениях.
НЕОБЫКНОВЕННЫЕ СПОСОБНОСТИ ОБЫКНОВЕННЫХ ЖИВОТНЫХ
ПОЧЕМУ НА ЗАГАДОЧНЫЕ СПОСОБНОСТИ ЖИВОТНЫХ НЕ ОБРАЩАЮТ ВНИМАНИЯ
В настоящее время биологи-практики руководствуются механистической теорией жизни, в которой животные и растения рассматриваются как чрезвычайно сложные механизмы, а вся их деятельность может быть сведена к законам физики и химии. Эта теория далеко не нова. Впервые ее выдвинул в XVII в. Рене Декарт в рамках своей механистической философии природы, в соответствии с которой космос — это гигантский механизм, а все его составляющие, включая человеческое тело, также являются механизмами различной степени сложности. От других механизмов человека отличает только духовное по своей природе сознание — логическое мышление, как полагал Декарт, управляющее механизмами тела из небольшого участка головного мозга.
Такой механистический подход во многом себя оправдывает. В животноводстве, растениеводстве, генной инженерии, биотехнологии и современной медицине механистическая теория жизни находит практическое применение. В области фундаментальных знаний та же механистическая теория позволяет узнать немало важного о молекулярной основе живых организмов, природе генетических связей, о структуре ДНК, химических и электрических свойствах нервной системы, физиологической роли гормонов и многих других свойствах живого организма.
Академическая биология также сложилась в рамках научных представлений XVII в. и сохранила присущий им редукционизм: функционирование сложной системы описывается как совокупность действий ее элементов, представляющих собой системы менее сложные. Предполагалось, что любые теории о функционировании живых организмов должны сводиться к их атомной структуре. Но теперь выяснилось, что сами атомы имеют сложную структуру и состоят из субатомных частиц, которые и сами представляют собой паттерны вибрации в пределах поля, и это открытие поставило под сомнение большинство базовых представлений материалистической науки. По словам философа науки Карла Поппера, «благодаря успехам современной физики материализм исчерпал себя»[3]. Тем не менее в академической биологии редукционизм сохраняет свои позиции, и до сих пор ученые пытаются свести любой феномен живой природы к взаимодействию на молекулярном уровне. Логично было бы предположить, что ведущую роль при таком подходе должны взять на себя химики, но, так как молекулы оказались сводимы к взаимодействию атомов, а атомы — к взаимодействию субатомных частиц, эта роль перешла к физикам. Таким образом, молекулярная биология стала одной из самых престижных и щедро финансируемых областей науки о живой природе. В то же время другие сферы биологии — такие, как этология (наука о поведении животных) или морфология (наука о строении живых организмов), — несмотря на свое глобальное значение, в академической иерархии имеют довольно низкий статус.
С самого начала, с тех пор, как она была предложена Декартом, механистическая теория жизни была внутренне противоречивой. В 20-е гг. XX в. ей была противопоставлена другая школа биологии, известная как витализм[4]. Витализм утверждает, что живые организмы являются живыми в полном и точном смысле слова, а в механистической теории нет места для такой категории. Более двух веков сторонники витализма утверждали, что в основе жизни лежат принципы, которые не могут быть известны химикам и физикам, изучающим неживую материю. Их оппоненты в свою очередь заявляли, что такие объекты, как «жизненная сила» или «живительная энергия», в природе не существуют, и даже если сейчас феномен жизни пока невозможно объяснить с точки зрения современных физики и химии, в не столь отдаленном будущем это обязательно станет возможным.
Допуская существование неизвестных науке оживляющих сил, сторонники витализма не отрицали и таких явлений, которые невозможно объяснить в рамках механистической теории жизни, — к примеру, психических процессов в живых организмах или сверхъестественных способностей у животных[5]. Сторонники же механистической теории, в отличие от виталистов, в принципе не признавали существования любых процессов, необъяснимых с точки зрения современных физики и химии.
Отстаивая свои позиции, сторонники механистической теории часто прибегают к аргументу, известному как «бритва Оккама». Этот принцип был впервые использован Уильямом Оккамом, средневековым философом оксфордской школы. Его суть в том, чтобы отбросить все теоретические построения, для которых не находится рационального объяснения. Так как «бытие не терпит излишнего усложнения», правильными следует признать наиболее простые объяснения. Но когда сторонники механистической теории используют «бритву Оккама», пытаясь оправдать имеющиеся на данный момент ортодоксальные научные воззрения, они пренебрегают философским смыслом этого положения[6]. Они исходят из того, что механистическое объяснение феномена жизни — самое простое по определению. В действительности же любая попытка следовать этой логике — к примеру, предсказать поведение муравья, исходя из структуры его ДНК, — требует проведения невероятно сложных расчетов, в настоящее время просто неосуществимых. Любые поля, силы и принципы, признанные нематериальными, отвергаются безо всяких объяснений, если их существование еще не подтверждено физикой. Приверженцы механистической теории до сих пор опасаются, что достоверность научных данных, полученных в результате кропотливого труда, окажется под сомнением, если в науке о жизни допустить существование чего-то «мистического» или «непостижимого»[7].
Тем, кто не интересуется историей науки, эти давние противоречия могут показаться несущественными и далекими от жизни. Но, к сожалению, они актуальны и по сей день. Биологи, агрономы и врачи, как правило, твердо уверены в том, что механистическая теория жизни знаменует победу разума над суевериями, от которых истинная наука должна защищаться любой ценой. Но необъяснимые для них паранормальные явления никуда не исчезли. Животные продолжают вести себя непредсказуемым образом. Все больше и больше внимания начинают привлекать к себе области медицины, которые не укладываются в рамки ортодоксальных схем. В обществе появляется все больше сомнений в эффективности традиционной академической науки применительно к животноводству, лесоводству, земледелию. Перспективы, которые сулит генная инженерия, скорее ужасают, чем вдохновляют. Несмотря на неимоверные усилия сторонников неодарвинизма, механистическая теория эволюции, в основу которой положены слепая случайность и естественный отбор, окончательно потеряла свою привлекательность в умах и сердцах людей.
Все это заставляет биологов переходить к обороне и с большой неохотой все-таки признавать, что определение жизни может оказаться намного сложнее, чем оно представляется современной физике. Возможно, именно потому некоторые удивительные явления, о которых пойдет речь в следующих трех главах, столь мало заинтересовали профессиональных исследователей.
Хотя исторические противоречия между сторонниками витализма и механистической теории жизни во многом способствовали формированию современной биологии, они, на мой взгляд, уже исчерпали себя. С 20-х гг. XX в. альтернативой механистической теории жизни стала холистическая, или организмическая, философия природы. Она утверждает, что целое больше суммы частей, его составляющих, и не только живые организмы, но и неживая материя — молекулы, кристаллы, галактики — обладают свойствами целого, несводимыми к свойствам их частей. Природа состоит из организмов, а не из механизмов[8].
Пока академическая биология оставалась на позициях трехсотлетней давности, другие науки давно уже вышли за пределы механистической теории бытия. Начиная с 60-х гг. XX в. космос рассматривается как непрерывно развивающийся организм, который никак нельзя отождествлять с простым механизмом; по мере этого развития связи внутри него постоянно усложняются и принимают новые формы. Физика отошла от строгого детерминизма и признала элемент случайности неотъемлемой частью окружающего мира — за счет неопределенности на квантовом уровне и в термодинамике неравновесных процессов, а также в свете теорий хаоса и сложных систем[9]. В космологии получило признание своего рода «космическое бессознательное» — так называемое «темное вещество», природа которого совершенно неясна, но которое, по всей видимости, составляет примерно 90—99% всей массы Вселенной. Одновременно квантовая теория выявила такие странные и парадоксальные свойства природы, как феномен нелокальности, когда системы, входившие прежде в состав более крупных систем, сохраняют между собой необъяснимую связь, даже будучи удалены друг от друга на многие километры[10].
Подавляющее большинство биологов пользуются давно устаревшими физическими теориями. Они специалисты именно в биологии, и ориентироваться в квантовой механике и других областях современной физики им трудно. В результате такие узкие специалисты пытаются объяснить жизнь посредством тех физических концепций, от которых сами физики уже давно отказались.
Исходя из всего вышеизложенного, несложно понять, почему, в частности, необычные способности животных так мало интересуют профессиональных исследователей и почему в целом глобальные вопросы остаются без ответа. Но в мою задачу не входит объяснение или оправдание тех или иных теорий. Я считаю, что современное научное мировоззрение слишком ограничено и узко, но верю, что природа сама подскажет нам верный путь познания. Пока что нам для этого нужны новые факты, и я надеюсь, что проведенные эксперименты помогут открыть такие области исследования, которые долго оставались закрытыми для ученых.
КАК ЖИВОТНЫЕ ПРЕДЧУВСТВУЮТ ВОЗВРАЩЕНИЕ ХОЗЯЕВ
ЖИВОТНЫЕ И ЛЮДИ: НЕВИДИМАЯ СВЯЗЬ
В городе, где я родился, Ньюарке-на-Тренте, по соседству с нами жила вдова, у которой была кошка. Сын вдовы служил в торговом флоте. Как-то эта женщина рассказала, что всегда точно знает, когда ее сын вернется из плавания, независимо от того, сообщил он об этом или нет. Она определяла момент возвращения по поведению кошки, которая всякий раз усаживалась на коврик у входной двери и мяукала час или два, пока сын хозяйки не появлялся на пороге. «Поэтому я всегда успевала поставить чайник», — добавляла вдова.
Эта женщина вовсе не была склонна к суевериям, хотя то, что она рассказывала, выглядело довольно фантастичным. Меня заставил задуматься тот факт, что об этом паранормальном явлении она говорила совершенно спокойно. Действительно ли кошка вела себя необычно или же ее хозяйка оказалась под влиянием какой-то иллюзии? Вскоре я убедился, что многие владельцы домашних животных рассказывают похожие истории. Большинство рассказчиков отмечали, что их питомцы каким-то образом точно определяют, когда должны вернуться домой долго отсутствовавшие члены семьи, и в большинстве подобных случаев проявляют беспокойство перед появлением хозяина.
В 1919 г. американский натуралист Уильям Лонг опубликовал чрезвычайно интересную книгу под названием «Как разговаривают животные», где описал поведение своего старого сеттера по кличке Дон. В частности, он рассказал, как в школьные годы Дон встречал его по приезде из школы-интерната.
«Поступив в школу, я поневоле разлучился с Доном, но оказалось, что он всегда предчувствует, когда я должен вернуться домой. Пес мог месяцами покорно оставаться возле дома и подчиняться моей матери, которая не особенно им интересовалась, но, как только я должен был приехать из интерната, Дон уходил и поджидал меня на пригорке, с которого просматривались все окрестности. Когда бы я ни приезжал, в полдень или в полночь, пес неизменно поджидал меня на одном и том же месте. Однажды я выехал домой без предупреждения, и в то же время Дон неожиданно убежал. Он не возвращался домой даже для того, чтобы поесть, и в конце концов моя мать отправилась его искать и нашла все на том же пригорке. Увидев Дона на месте встречи, она вернулась домой и принялась убирать мою комнату, догадавшись, что я скоро приеду. Если собака привыкла проводить время в каком-то определенном месте, ее поведение можно объяснять как угодно, но Дон выходил на пригорок только тогда, когда я должен был вернуться. Более того, на место встречи он всегда приходил за несколько минут до того, как я садился в поезд. Получается, что Дон всегда точно знал, когда я собираюсь домой»[11].
Таких историй очень много. Можно ли относиться к ним серьезно? Любой скептик всегда предпочтет объяснить их случайным совпадением, обостренным обонянием и слухом животного, его привычками — или же легковерием, доверчивостью и самообманом хозяина, который хочет поверить в необычность своего питомца.
Но такие умозаключения не имеют под собой серьезной научной базы. Никаких исследований в этой области до сих пор вообще не проводилось, и не потому, что такого рода эксперименты никому не интересны. Напротив, необъяснимые способности домашних животных живо интересуют всех, кто сталкивался с их проявлениями. Материальная сторона исследований также не составляет проблемы, так как эксперименты в этой области практически не требуют специального финансирования. Я полагаю, что научной работе в этом направлении мешают три стойких предрассудка. Это предубеждение против исследования любых паранормальных явлений, предубеждение против серьезного отношения к домашним животным и предубеждение против любых экспериментов с домашними животными. В конце главы я подробно изложу проблемы, связанные с этими предубеждениями, а пока о них лучше просто забыть и обратиться к собственно экспериментам.
ЭКСПЕРИМЕНТЫ С ЖИВОТНЫМИ, СПОСОБНЫМИ ПРЕДЧУВСТВОВАТЬ ВОЗВРАЩЕНИЕ ХОЗЯЕВ
Однажды, когда я беседовал со своим коллегой Николасом Хамфри, отличавшимся редкостным скептицизмом, у меня сложилась идея простого в проведении и не требующего затрат эксперимента, с помощью которого можно проверить, действительно ли животные способны предчувствовать возвращение хозяев. Разговор шел именно об этом удивительном феномене, и я поинтересовался мнением Николаса. К моему удивлению, Николас подтвердил существование этого явления и рассказал о том, что его собака тоже демонстрирует удивительные способности. Но тут же он поспешил добавить, что ничего мистического в поведении домашних животных нет и что, по его мнению, животные обладают обостренной чувствительностью и потому реагируют на такие слабые сигналы, которых люди просто не ощущают.
Я уверен, что такого рода дискуссии происходят постоянно, но в тот раз в споре сложилась идея эксперимента. Если животное заблаговременно и точно реагирует на возвращение домой своего хозяина, можно подтвердить или исключить то объяснение, которое предложил мой товарищ, то есть действие привычки или сигналов, поступающих от органов чувств. Для этого достаточно, чтобы хозяин вернулся в неурочное время или при непривычных обстоятельствах, а для большей точности желательно, чтобы члены семьи также не знали точного времени его возвращения и животное не могло предугадать момент появления своего хозяина по их поведению.
Я вовсе не утверждаю, что установившийся порядок в доме, привычные запахи и звуки, а также поведение других членов семьи не влияют на реакцию домашнего животного. Напротив, эти факторы имеют чрезвычайно большое значение. Цель эксперимента состоит в том, чтобы исключить их и тем самым выяснить, не влияет ли на поведение животного что-то еще. Сможет ли животное определить, когда вернется хозяин, если не будет никакой информации, доступной органам чувств? Предлагаемый опыт похож на те эксперименты, с помощью которых исследовалась способность голубей находить дорогу к дому. Даже в тех случаях, когда привычные ориентиры исчезали один за другим, голуби все равно возвращались домой (см. главу 2).
Результаты единственного исследования в этом направлении, которое мне известно, были опубликованы моим единомышленником Уильямом Лонгом, чей рассказ о поведении сеттера по кличке Дон я уже приводил.
«Вторая собака была самым настоящим сторожевым псом, и даже звали ее Сторож. Как и Дон, дожидавшийся меня на пригорке, он всегда встречал своего хозяина. Хозяин Сторожа, строитель и плотник, чрезвычайно много работал, подолгу оставался в своей конторе в городе и мог появиться дома в любое время, днем или затемно. Всякий раз Сторож точно определял момент возвращения, как будто видел хозяина на пути домой. Находясь в доме, он проявлял беспокойство, лаял, всячески требовал, чтобы его выпустили на улицу, а затем мчался навстречу хозяину и встречал его на полпути. О странном таланте Сторожа знали все соседи, и время от времени самые недоверчивые из них проводили такой эксперимент: владелец пса называл точное время, когда собирался возвращаться домой, а один или несколько соседей наблюдали за поведением собаки. Всякий раз Сторож выбегал на дорогу буквально через несколько секунд после того, как его хозяин выходил из конторы или прощался со своими деловыми партнерами. Сторож всегда чувствовал его возвращение, хотя в этот момент хозяин находился за несколько километров от дома»[12].
Конечно, мне хотелось бы задать много вопросов о привычках собаки и ее владельца. К сожалению, и пес, и его хозяин давно умерли, так что остается изучать поведение ныне здравствующих домашних животных.
В 1992 г. я опубликовал статью, посвященную этой теме, где предложил владельцам домашних животных связаться со мной, если тема им интересна и у них самих есть какие-то любопытные наблюдения. Прежде всего я хотел установить контакт с теми, кто согласился бы участвовать в моих исследованиях. Моя статья с приглашением к сотрудничеству была опубликована в разделе частных исследований «Бюллетеня Института исследований разума», который распространяется среди сотрудников этого института в США и других странах.
В ответ я получил более сотни писем, и во многих из них содержалась чрезвычайно ценная информация по интересующей меня проблеме. Некоторые наблюдения совершенно исключают возможность того, что животные реагируют только на сложившийся в доме распорядок дня и привычки хозяев. Вот, например, сообщение, полученное от г-жи Луизы Гейвит из г. Морроу, штат Джорджия:
«В нашем случае нельзя говорить о каком-то привычном, раз и навсегда установленном расписании моих уходов и возвращений домой. Тем не менее мой муж говорит, что наша собака всегда чувствует, когда я должна оказаться дома. Примечательно, что точно так же дело обстояло с двумя кошками и собакой, которых мы держали раньше. Такое впечатление, что мой пес реагирует и на мое решение вернуться, и на сам факт возвращения. Я попыталась как можно точнее сопоставить свои намерения и действия с реакцией собаки. Получилось следующее. В тот момент, когда я выходила из здания, где находилась, и шла к машине, собираясь ехать домой, наш пес Би-Джей просыпался, шел к входной двери, укладывался на пороге и утыкался носом в щель между дверью и полом. В таком положении он меня и дожидался. По мере того как я все ближе и ближе подъезжала к дому, Би-Джей начинал проявлять беспокойство, прыгать и всем своим видом показывать, что его хозяйка вот-вот вернется с работы. Как только я приближалась к входной двери, пес всегда просовывал нос в щель между полом и дверью, приветствуя меня. Я твердо уверена, что поведение Би-Джея совершенно не зависит от того, насколько далеко от дома я нахожусь. Примечательно, что он никогда не реагирует на мои поездки из одного учреждения в другое, а совершенно точно определяет именно тот момент, когда я решаю отправиться домой и иду к машине».
Эти наблюдения меня просто потрясли. Я предложил г-же Гейвит попробовать вернуться домой каким-то другим, непривычным способом. К примеру, ее мог подвезти до дому кто-то из знакомых на неизвестном собаке автомобиле. Выяснилось, что Би-Джей реагирует на возвращение хозяйки независимо от того, на каком автомобиле она приезжает.
«Я возвращаюсь домой по-разному: иногда на своей машине, иногда беру фургончик мужа, а бывает и так, что меня подвозят незнакомые люди на автомобилях, которых Би-Джей никогда не видел. Кроме того, иногда я возвращаюсь домой пешком. Не знаю, как именно пес узнает о моем решении вернуться, но реагирует он всегда одинаково — даже когда моя машина остается дома, в гараже».
А вот еще один пример, о котором мне сообщил г-н Старфайер из Кахулуи (Гавайи):
«За полчаса до того, как мой отец возвращается домой, наша собака Дебби всегда устраивается у входной двери и там дожидается его прихода с работы. Когда отец находился на военной службе, он мог вернуться в любое время, но поведение собаки совершенно не зависело от того, звонил ли он заранее, предупреждая о своем приходе, или нет. Какое-то время мне казалось, что Дебби просто реагирует на телефонные звонки, но потом сомнения пришлось отбросить. Дело в том, что по телефону отец мог сказать, что вернется домой пораньше, а в действительности приходил только поздно вечером. Иногда у него вообще не было возможности позвонить домой перед приходом со службы. Тем не менее Дебби ни разу не ошиблась, она точно определяла момент возвращения отца, и потому ее поведение нельзя было объяснить реакцией на телефонный звонок. Первой на необычное поведение собаки обратила внимание моя мать. Всякий раз, когда Дебби подходила к входной двери, мать начинала готовить обед. Если собака не занимала своего поста у двери, все знали, что отец вернется домой позже обычного. В таких случаях собака все равно устраивалась у двери, но лишь тогда, когда отец уже был на пути к дому».
Г-жа Джен Вуди из Далласа (Техас) сообщила мне еще об одном примере необычных способностей у домашних животных, который невозможно объяснить с привычных позиций:
«Наша собака Кейс всегда точно знала, когда я или мой муж собираемся вернуться домой. Чем бы она ни занималась— бегала во дворе (в этом случае она просила, чтобы ее впустили в дом) или находилась дома, — она всегда усаживалась у входной двери именно в тот момент, когда кто-то из нас заканчивал свои дела. И неважно, как далеко от дома мы находились. Иногда муж звонил мне, сообщая, что закончил дела и уходит с работы. При этом он часто интересовался, сидит ли Кейс у входной двери. В других случаях кто-то из нас сообщал, когда уходит с работы, и спрашивал, сидела ли Кейс в этот момент у двери. Кроме того, Кейс могла лаем сообщить нам о доставке почты, и в конце концов это даже вошло в ее обязанности. Она никогда не ошибалась даже в тех случаях, когда находилась не дома, а у моих родителей, в мотеле или гостинице. Я не представляю, каким образом она могла бы расслышать звук мотора нашей машины, если в тот момент мы находились в другом городе. Я не понимаю, какие органы чувств могли подсказать ей точное время нашего возвращения домой, если мы с мужем зачастую сами не знали, когда именно кто-то из нас вернется. Иногда я могла неожиданно задержаться на работе на полчаса и дольше, иногда заседания суда задерживали моего мужа на целый день, но бывало и так, что они заканчивались в течение часа».
К сожалению, Кейс умерла в 1992 г., и теперь нет никакой возможности провести дополнительные опыты и уточнить наблюдения г-жи и г-на Вуди.
Г-жа Вайда Бейлисс живет в своей усадьбе площадью в сорок акров в лесистой местности, в одном из заповедных уголков штата Орегон. Ее усадьба расположена в трех милях от ближайшей автострады. Собака г-жи Бейлисс, семилетний кобель по кличке Орион (помесь боксера с доберманом), свободно бегает по окрестностям, далеко отходя от дома. Однако всякий раз, когда хозяйка возвращается домой — даже если ее возвращение оказывается неожиданным и не укладывается в привычный распорядок жизни, — Орион всегда встречает ее на одном и том же месте. Мне и раньше приходилось слышать много историй о свободно разгуливающих собаках и кошках, которые точно определяют момент возвращения хозяев и спешат приветствовать их у входа в дом. Кроме того, Орион четко различает, когда в усадьбу приезжают члены семьи, а когда — посторонние люди. В случае приезда посторонних он лает, предупреждая о появлении чужаков, а «своих» встречает молча.
«Создавалось также впечатление, что Орион сам определяет, кого считать "своим". Например, после развода — даже в тех случаях, когда мой бывший муж приезжал на том же самом автомобиле, что и раньше, — Орион стал на него лаять. В то же время визиты моих родителей всегда вызывают у пса молчаливое одобрение, хотя отец с мамой приезжают довольно редко. Если кто-либо из членов семьи приезжал не на своем автомобиле, Орион всегда встречал его лаем, и только после того, как опускалось стекло, реакция Ориона менялась на дружелюбную. Однако в тех случаях, когда мой собственный автомобиль оказывался в ремонте, а я брала машину напрокат, мой пес ни разу не встретил меня лаем. Надо отметить, что дорога к дому не слишком хороша, к тому же на ней есть три крутых поворота. Может быть, Орион реагирует на то, что я уверенно проезжаю этот участок дороги независимо от того, в каком автомобиле еду к дому?»
Чтобы узнать точный ответ на этот вопрос, госпожа Бейлисс могла бы попробовать вернуться домой в неурочный час на незнакомом автомобиле, за рулем которого сидел бы кто-то другой...
Мои корреспонденты в США сообщили мне о десятках других подобных случаев. Кроме того, из Великобритании и Германии мне поступило более тридцати устных сообщений на ту же самую тему. Мне приходилось слышать даже о попугае с такими же удивительными способностями. В каждом случае было бы легко провести дополнительные эксперименты, способные прояснить закономерности в поведении животного. Приведенные выше примеры только иллюстрируют общие принципы.
Возможно, в мире есть миллионы домашних животных, способных точно определять момент возвращения хозяев. Если хотя бы некоторые их владельцы проявят достаточный интерес к нашему необычному исследованию, весьма вероятно, что в скором времени удастся выяснить, вписывается ли это явление в современные научные представления. Если в результате целого ряда независимых опытов будет доказано, что мы имеем дело с паранормальным феноменом, можно будет перейти к дополнительным экспериментам, чтобы более точно описать его суть. На этой стадии было бы полезно привлечь к работе профессиональных исследователей. Весьма вероятно, что скептически настроенные ученые выдвинут собственные, альтернативные объяснения, и тогда потребуются более сложные опыты для проверки их гипотез. Не исключено, что академические гипотезы окажутся даже более фантастическими, чем допущение о существовании явлений, пока не известных науке. Каждому, у кого есть домашние животные, обладающие способностью предвидеть возвращение хозяина, понятна необходимость изучить их поведение. Проще всего участвовать в исследованиях тем, кто может рассчитывать на помощь своей семьи, друзей и, разумеется, самих животных. Особенно ценным было бы сотрудничество студентов, в семьях у которых есть домашние животные, тем более что для них самих эта работа стала бы первым серьезным вкладом в науку.
СОЦИАЛЬНЫЕ И БИОЛОГИЧЕСКИЕ АСПЕКТЫ
При исследовании парапсихологических способностей человека испытуемым, как правило, вскоре наскучивают однообразные эксперименты. Как только интерес пропадает, результаты исследований перестают быть достоверными. Совершенно иначе обстоит дело с животными: их бурная реакция повторяется всякий раз, когда хозяева возвращаются домой, животному никогда не надоест приветствовать хозяина. Поэтому эксперименты с домашними животными, которые чутко реагируют на возвращение хозяев, представляются мне весьма перспективными.
Доброжелательность — главное свойство взаимоотношений между домашними животными и их хозяевами. Существует отчет об исследовании, проведенном в Кембридже (Великобритания). Владельцам собак предложили описать своих питомцев по двадцати двум признакам, таким, как игривость, послушание, привязанность и т. п. Кроме того, их попросили составить портрет условной «идеальной» собаки. Как и следовало ожидать, идеальная собака любила гулять, была послушной, понятливой, добродушной, активной и обладала всеми остальными положительными качествами. Но более интересным оказалось то, как именно качества реальной собаки согласовывались с теми, которые ее владелец считал идеальными:
«Выяснилось, что идеальная собака прежде всего должна быть очень ласковой и всегда приветствовать хозяина или хозяйку, когда бы те ни возвращались домой. Она должна уметь выражать свои чувства ярко и недвусмысленно, почти по-человечески, и с радостью воспринимать все, что скажет или сделает хозяин...
Собаки и кошки по самой своей природе способны выражать дружелюбие в такой форме, которая понятна и близка человеку, и благодаря этому врожденному свойству они могут стать настоящими членами семьи. Самый наглядный способ выразить привязанность — стремление всегда искать нашего общества и находиться к нам как можно ближе. Собаке свойственно вести себя так, как будто она «привязана» к хозяину невидимым поводком. Всегда, когда это возможно, собака следует за своим хозяином, сидит или лежит рядом с ним, и всякий раз она проявляет огорчение, если хозяин уходит и не зовет ее с собой или же неожиданно прогоняет четвероногого друга из комнаты, где он находится»[13].
Точно так же, как человек здоровается со своими друзьями и близкими в соответствии с принятыми в человеческом обществе нормами и традициями, собаки проявляют свою привязанность в соответствии с законами поведения стаи. Как правило, собака повизгивает от возбуждения, уголки ее пасти оттягиваются назад в так называемом оскале послушания, а если собака недостаточно выдрессирована, она пытается подпрыгнуть и лизнуть хозяина в лицо. Собака виляет хвостом так интенсивно, что в движение приходит и вся задняя часть туловища. Подобное поведение характерно для щенков, с радостью приветствующих свою мать. Точно так же проявляют дружелюбие волки. Когда волчица перестает кормить молоком своих детенышей, волчата начинают настойчиво просить пищу у своих родителей или других членов стаи. Когда взрослый волк приближается к ним с добычей в пасти, подросшие волчата возбужденно толпятся вокруг его головы, виляют хвостами, демонстрируя тем самым свою зависимость, подпрыгивают и пытаются лизнуть волка в уголки пасти. По мере взросления такое поведение перерастает в ритуал приветствия и демонстрации единства стаи. Доминирующие члены стаи в этом ритуале исполняют роль «родителей» по отношению к остальным волкам, они принимают знаки внимания, расхаживая с костью, палкой или каким-либо другим предметом в пасти[14].
Точно так же ведут себя по отношению к человеку и кошки. Они приближаются к хозяину, высоко подняв хвост, издают нежные звуки, трутся о руки или ноги хозяина с громким мурлыканьем, а нередко к тому же переворачиваются на спину. Именно так котята встречают возвращающуюся мать.
На протяжении миллионов лет дикие предки собак и кошек жили стаями и семьями, и во время охоты молодые особи всегда держались позади взрослых животных. То же самое можно наблюдать и у современных близких и отдаленных родственников домашних собак и кошек. Возвращение с охоты с добычей — всегда чрезвычайно важное событие с точки зрения выживания вида. Таким образом, за доброжелательным поведением щенков, встречающих взрослых животных, стоит многовековая история эволюции.
Собаки живут рядом с людьми более десяти тысяч лет. Кошки были одомашнены намного позже (скорее всего, это произошло в Египте примерно четыре тысячи лет назад). Если будет подтверждена паранормальная связь между домашними животными и их владельцами, с большой долей вероятности можно будет допустить существование подобных связей между членами стаи у родственных собакам и кошкам диких животных. Кроме того, окажется весьма вероятным, что те же виды связей существуют и в сообществах животных многих других видов. Природа социальных связей в сообществах животных, да и в человеческом обществе, до сих пор не изучена. К этому вопросу я еще вернусь в главе 3.
ТРИ ТАБУ, ЗАТРУДНЯЮЩИЕ ИЗУЧЕНИЕ ДОМАШНИХ ЖИВОТНЫХ
Хотя поведение домашних животных, способных точно определять момент возвращения хозяина, до сих пор практически не изучалось, изложенные выше наблюдения показывают, что в этой области можно получить уникальные научные результаты, обойдясь без сколь-либо серьезных финансовых затрат. Почему же опыты, которые можно было поставить уже давным-давно, так и не проведены? Причина этого — в скрытых, но чрезвычайно устойчивых табу. Мне представляется важным хотя бы вкратце обрисовать эти табу, потому что каждый владелец животного, пожелавший принять участие в исследованиях, должен их осознавать. Будучи осознанными, они теряют силу и перестают препятствовать опытам.
Слово «табу» ведет свое происхождение из языка аборигенов острова Тонга, и его смысл можно приблизительно передать как «слишком священное, слишком зловещее, то, к чему нельзя прикасаться, то, что нельзя называть по имени и нельзя использовать». Иными словами, «табу» означает нечто, находящееся под абсолютным запретом[15]. Я опишу три табу, из-за которых наложен запрет на исследование необъяснимых способностей домашних животных.
1. ТАБУ НА ИССЛЕДОВАНИЕ ПАРАНОРМАЛЬНЫХ СПОСОБНОСТЕЙ
Прежде всего, в науке существует запрет на серьезное отношение к парапсихологическим или паранормальным явлениям. Любой феномен, который не вписывается в рамки доминирующего по сей день механистического мировоззрения, подвергается сомнению. Поэтому паранормальные явления принято не замечать.
Это табу активно поддерживается Скептиками. Говоря о Скептиках, я не имею в виду обычный здоровый скептицизм, неотделимый от здравого смысла. Речь идет о воинствующих скептиках, Скептиках с большой буквы, собирающихся в организованные группы и стремящихся взять на себя роль охранителей разума от любых публичных заявлений о существовании паранормальных феноменов[16]. Ученые-Скептики стремятся обосновать механистическое мировоззрение аргументами, базирующимися на нем же самом, и упорно отстаивают свои позиции. Таких ученых можно назвать настоящими фундаменталистами от науки. Им кажется, что, если паранормальные явления получат признание, современную цивилизацию захлестнет бурный поток суеверий и религиозных предрассудков. Их любимый метод состоит в исключении паранормальных явлений на том основании, что последние «нерациональны». Уверенность других Скептики объясняют легковерием или невежеством, а те Скептики, которым приятно считать себя высокообразованными людьми, объявляют своих оппонентов недоучками.
Среди влиятельных образованных людей интерес к паранормальным явлениям считается чем-то занятным, но неприличным в обществе. Он допустим в частной жизни или в «желтой» прессе, но ему нет места в системе образования, в программах научных и медицинских институтов. Паранормальное в принципе не может быть предметом серьезной научной дискуссии.
К сожалению, многие сторонники Скептиков не различают строго научных и частных мировоззренческих позиций. Под защитой науки они понимают защиту механистического взгляда на мир. Все эксперименты, которые я предлагаю в этой книге, и в этой главе в частности, не вписываются в механистическое мировоззрение, но тем не менее остаются научной работой в точном смысле слова. Результаты экспериментов должны расширить и обогатить именно научную картину мира, а если окажется, что все исследуемые явления исчерпывающим образом объясняются уже сложившимися научными теориями, Скептики только окажутся в выигрыше и получат дополнительные аргументы для защиты своих воззрений.
Не следует опасаться Скептиков. Если они примутся оспаривать точные результаты опытов исключительно на основании собственных схоластических предрассудков, они лишь подтвердят свою недобросовестность лишатся всякого доверия общественности. Если же Скептики, как сами они не раз обещали, поверят в конкретные научные данные — пусть даже эти данные не укладываются в их представления, — им придется выступить в роли наших помощников.
2. ТАБУ НА СЕРЬЕЗНОЕ ОТНОШЕНИЕ К ДОМАШНИМ ЖИВОТНЫМ
Сам по себе статус домашних животных представляет собой чрезвычайно распространенное и, как правило, неосознаваемое табу. Сущность этого табу заключается в том, что в привязанности человека к своему питомцу усматривается нечто странное, порочное или расточительное.
Это табу недавно было рассмотрено Джеймсом Серпеллом, научным сотрудником Кембриджского университета, исследующим поведение животных. Еще в 70-е гг., будучи аспирантом, он заинтересовался взаимоотношениями людей и их домашних животных. Серпелл с удивлением обнаружил, что научные исследования в этой сфере почти не проводились, хотя более половины семей в Западной Европе и Северной Америке держат по крайней мере одно домашнее животное, считая аквариумных рыбок и птиц. В странах Европейского сообщества, по некоторым оценкам, насчитывается в общей сложности 26 млн домашних собак и 23 млн домашних кошек, в США — приблизительно 48 млн собак и 27 млн кошек, а ежегодные расходы владельцев на корм и ветеринарное обслуживание своих питомцев составили приблизительно 10 млрд долларов[17]. Николас Хамфри замечает по этому поводу: «В США домашних кошек и собак примерно столько же, сколько телевизоров. Воздействие телевидения на людей исследовано и описано тщательнейшим образом, а воздействие домашних животных на людей до сих пор практически не изучено»[18]. Почему ученые так настойчиво игнорируют эту тему?
Серпелл пришел к впечатляющим выводам. Он показал, что табу жестко разделяет отношение к домашним животным и к сельскохозяйственным. В первом случае животное определяется как «друг человека», во втором — как «скот». Многие собаки, кошки и лошади пользуются большой любовью своих хозяев, их холят и лелеют, а иногда после смерти животного им даже ставят памятники. С другой стороны, к свиньям, цыплятам, коровам и другим животным, которых разводят на крупных фермах, не принято испытывать никаких чувств, к ним относятся потребительски и нередко жестоко. Такие животные воспринимаются как звенья продовольственной цепочки, и единственная цель их разведения — получение максимального количества продукта по минимальной цене. Крупные животноводческие фермы построены в полном соответствии с механистической моделью мира. Точно так же в лабораторных экспериментах к животным относятся как к дешевому материалу для опытов.
Пытаясь оправдать подобное отношение, люди стараются считать сельскохозяйственных животных более примитивными, чем домашние, и на этом основании полагают справедливым не относиться к ним как к живым существам в полном смысле слова. Конфликт возникает в том случае, если владелец сельскохозяйственного «животного начинает воспринимать его как существо, обладающее самостоятельной ценностью, а не просто как продовольственное сырье. Простейший способ избежать такого конфликта — условно поделить всех животных на две категории: домашних и сельскохозяйственных. Первых мы содержим, а из вторых производим корм для первых. Но если мы начинаем воспринимать «скотину» как живое существо, остается стать вегетарианцем или вступить в общество защиты животных. Другой, более примитивный способ решения той же проблемы — осудить человеческую привязанность к домашним животным.
Примеры негативного отношения к этой привязанности встречаются в истории. К примеру, в средневековой Англии особое внимание к животным, особенно кошкам, расценивалось как неестественное и считалось основанием для обвинения в колдовстве. В современном индустриальном обществе пропасть между «питомцами» и «скотом» стала особенно наглядной. Материальное изобилие позволяет совершенно бескорыстно содержать огромное количество домашних животных, и многих из них — в настоящей роскоши. В то же время на животноводческих фермах и в лабораториях в совершенно других условиях выращивается множество «полезных» животных, при уходе за которыми применяется множество механизмов, а участие людей сводится к минимуму.
Исходя из всего вышеизложенного, нетрудно понять, почему домашние животные не подходят для научных экспериментов, построенных по механистическим принципам. Традиционная наука считает объективным деление животных на «приятных» и «полезных», и домашние животные не отвечают духу механистической теории. Их нельзя считать легко заменяемыми объектами, у них есть хозяева, они находятся с людьми в долговременных дружественных отношениях. Таких животных трудно отобрать для эксперимента, с ними трудно работать исследователям, и в особенности тем, кто пытается доказать, что у животного отсутствуют какие бы то ни было чувства. Домашние животные населяют «субъективный» мир частной жизни в противоположность «объективному» миру науки.
Разумеется, авторы популярных книг о домашних животных считают привязанность человека к питомцу естественной и необходимой. К примеру, Барбара Вудхаус, автор нескольких книг о дрессировке животных, советует читателю следующее:
«Я уверена, что каждый, кто хочет заслужить привязанность животного, должен отдать ему часть самого себя. Более того, человек должен относиться к животному так, как, по его представлению, животное могло бы относиться к нему самому. Если мы хотим заслужить расположение собаки, не следует держать ее в будке на цепи и при этом рассчитывать, что животное, прожившее всю жизнь на привязи, вдруг проявит дружелюбие и понимание. Я считаю, что домашние животные должны постоянно жить рядом с человеком, слышать его речь, угадывать обращенные к ним мысли, — если, конечно, мы действительно хотим обрести в своем питомце настоящего друга»[19].
Между прочим, в США существует возможность вместе со своим домашним животным посещать специальные семинары и учиться понимать друг друга. Специально для домашних животных работают консультанты, терапевты и целители, некоторые из них могут дать совет даже по телефону. А Пенелопа Смит, жительница округа Марин (Калифорния), проводит занятия, на которых помогает владельцам домашних животных постепенно усиливать телепатическую связь со своими питомцами. Ее подход основан примерно на тех же принципах, которыми руководствуется Барбара Вудхаус:
«Животные способны хорошо понимать, о чем вы говорите или думаете, но эту способность они проявят лишь в том случае, если вам удастся завладеть их вниманием и они сами захотят вас услышать, — точно так же, как это происходит и в общении человека с человеком... Интересно, что чем с большим уважением вы относитесь к интеллекту животных, чем больше разговариваете с ними, включаете их в свою жизнь, относитесь к ним как к своим друзьям, тем более понятливыми они становятся и с большей теплотой относятся к вам»[20].
В таких условиях трудно представить себе проведение эксперимента над животным, зато появляются богатые возможности для изучения взаимоотношений животного и человека. В таких исследованиях эмоциональная сторона этих взаимоотношений не отвергается, а, напротив, выходит на первый план.
3. ТАБУ НА ЭКСПЕРИМЕНТЫ С ДОМАШНИМИ ЖИВОТНЫМИ
Третье табу имеет много общего со вторым. Многие владельцы домашних животных сильно привязаны к своим питомцам и чувствуют себя обязанными защищать их от любого травмирующего воздействия. Научный эксперимент ассоциируется прежде всего с испытанием новых лекарственных препаратов и вивисекцией. Ежегодно миллионы животных приносятся в жертву на алтаре науки – кролики, морские свинки, собаки, кошки, обезьяны… Многие любители животных помнят и о том, что по «научным» принципам устроены животноводческие фермы, где животное вообще не рассматривается как самостоятельное существо.
В такой ситуации сама мысль о том, что наука может вторгнуться в частное пространство и подвергнуть любимое животное каким-то насильственным манипуляциям, представляется чудовищной. Нанесение любого вреда домашнему животному является табу.
Такое отношение к эксперименту вполне понятно, но исследования, которые я предлагаю в этой книге, ни в коем случае не предполагают жестокого обращения с животными или тем более нанесения ему какого-либо вреда. Напротив, Предлагаемые опыты должны оказаться весьма интересными не только для людей, но и для самих животных. Кроме того, сам характер исследований предполагает, что домашние животные и их взаимоотношения с людьми представляют собой самостоятельную ценность, поэтому вполне возможно, что участие в такой научной работе поможет людям с большим уважением относиться к животным и их способностям. Я уверен в том, что научный проект, способный коренным образом изменить существующее мировоззрение, непременно должен включать исследования, которые позволят по-новому понять очевидные и невидимые связи между человеком и представителями животного мира.
ДРУГИЕ ИССЛЕДОВАНИЯ ВЗАИМОСВЯЗЕЙ МЕЖДУ ЧЕЛОВЕКОМ И ЖИВОТНЫМ
Возможность точно определить момент, когда люди возвращаются домой, – лишь одно из проявлений удивительных способностей, присущих домашним животным. Известны и другие феномены, изучение которых не требует существенных финансовых затрат и сложных опытов.
1. Способность животных возвращаться домой (подробнее я расскажу об этом в следующей главе).
2. Способность животных отыскивать хозяина, который ушел из дома (об этом также в следующей главе).
3. Способность животных к телепатическому общению. В критической ситуации некоторые домашние животные ощущают, что хозяин находится в опасности, и выказывают при этом признаки сильной тревоги[21].
Другие проявления той же способности не столь драматичны, – например, некоторые собаки со сверхъестественной точностью определяют, когда с ними отправятся на прогулку. Некоторые домашние животные способны с высокой точностью предвидеть, когда их хозяева соберутся в отпуск, причем еще задолго до того, как те начинают укладывать чемоданы. Известно множество историй о телепатических способностях лошадей и даже черепах. Недавно я получил сообщение от г-жи Шарон Ронсе из округа Снохомиш (штат Вашингтон):
«Не могу с уверенностью сказать, знает ли наша черепаха, что мы находимся дома. Но, уловив закономерность, в соответствии с которой она приходит поесть, я убедилась, что она обладает телепатическими способностями. Невозможно говорить о привычке, так как я кормлю черепаху в разное время Мне захотелось провести кое-какие эксперименты когда я заметила, что черепаха приходит именно тог да, когда я собираюсь ее накормить. Немного понаблюдав за черепахой, я выяснила, что в любое врем? суток она прячется в своем маленьком убежище и судя по всему, спит. Мне достаточно подумать о том что неплохо бы ее накормить. Я отправляюсь на кухню и начинаю готовить корм, а черепаха каждый раз приходит на обычное место кормления и ждет, когда ее накормят».
Совершенно очевидно, что домашние животные чувствительны к трудноуловимым для нас сигналам, исходящим от людей, и чутко воспринимают то воздействие, которое подсознательно оказывают на них хозяева. Эксперименты по выявлению телепатических способностей должны исключить обычные способы связи между животным и его хозяином: животное в ходе опыта не должно видеть хозяина, слышать издаваемые им звуки и ощущать его запах. К примеру, выводы г-жи Ронсе можно было бы уточнить, если поручить наблюдение за черепахой кому-нибудь другому или установить видеокамеру. В той комнате, где черепаха не могла бы видеть и слышать хозяйку, г-же Ронсе нужно подумать о том, как накормить питомицу, после чего идти на кухню. Наблюдение должно уточнить, просыпается ли черепа ха в момент решения хозяйки или только тогда, когда из кухни начинают доноситься звуки, предвещающие кормление.
Способность животных чувствовать приближающуюся опасность и предупреждать своих хозяев. Часто рассказывают о том, как животное пыталось помешать хозяину отправиться в опасное путешествие. Кроме того, нередко беспокойное поведение животных ярко проявляется накануне землетрясений. Вот один из примеров:
«В 1960 г. в Агадире (Марокко) бродячие животные, в том числе собаки, сплошным потоком устремились прочь из порта. Это произошло накануне подземного толчка, унесшего жизни пятнадцати тысяч человек. Три года спустя подобное явление наблюдалось накануне землетрясения, которое буквально стерло с лица земли город Скопье в Югославии. В принципе многие животные перед стихийными бедствиями покидают опасные места. Советские ученые тоже наблюдали подобное явление: многие животные стали покидать Ташкент накануне землетрясения, случившегося в 1966 г.».
Исследование подобных случаев могло бы иметь огромное практическое значение, а в Китае уже на протяжении веков бытует практика предсказания грядущих бедствий по поведению животных. Но это уже другая область, где нельзя говорить о простых и безопасных экспериментах.
5. Некоторые домашние животные, возвращаясь из поездки, даже в темноте и полусонные, после долгой езды в машине способны почувствовать близость дома. У нас с женой была кошка по кличке Ремеди, которая по многу часов спала в машине и всегда просыпалась, когда мы оказывались на расстоянии одной-двух миль от дома. Такая реакция может указывать на существование непосредственной связи между животным и его домом. Возможно, эта связь родственна способности находить дорогу домой, о которой пойдет речь в следующей главе. С другой стороны, то же самое явление может быть вызвано способностью животных узнавать хорошо известные звуки и запахи, когда автомобиль подъезжает к дому по знакомой дороге, или реакцией на поведение людей, знающих, что вскоре окажутся дома.
В этом случае вновь могли бы оказаться полезными простые контрольные эксперименты. Гипотезу о том, что домашнее животное реагирует на знакомые раздражители, можно проверить, если хозяева попробуют ехать домой по незнакомой дороге — желательно такой, по которой животное ни разу не возили. Влияние знакомых запахов, видов местности и звуков можно свести к минимуму, если поместить животное в коробку или корзину, возвращаться в темное время суток, держать окна автомобиля закрытыми, а в салоне включить кондиционер и музыку. Если в этом случае животное никак не прореагирует на приближение к дому, можно принять гипотезу о воздействии знакомых раздражителей.
Если же при подъезде к дому по незнакомой дороге животное почувствует близость дома, нужно будет провести следующий опыт, который должен подтвердить или исключить реакцию животного на поведение людей в салоне автомобиля. Один из способов произвести этот эксперимент — поместить животное в задней части автомобиля с кузовом «универсал» таким образом, чтобы оно не могло видеть и слышать своего владельца, сидящего на переднем сиденье, и не ощущало его запаха. За поведением животного мог бы следить кто-то посторонний, не знающий местонахождение дома, или же реакции животного можно было бы зафиксировать на видеопленке. При этом самому хозяину не следует садиться за руль, чтобы не подавать животному подсознательных, сигналов, к примеру, своим стилем вождения или реакцией на знакомую дорогу. Лучше всего попросить водителя следовать по определенному маршруту, проходящему мимо дома, расположение которого водителю неизвестно.
Если даже в таких условиях животное сможет точно определить момент, когда оно окажется вблизи дома, гипотеза о наличии прямой связи между животным и его домом получит серьезное подтверждение. Природа такой связи и ее возможное родство со способностью животного находить дорогу домой могли бы стать предметом будущего исследования. Но прежде чем проводить более сложные и дорогостоящие эксперименты, нужно с помощью простых опытов убедиться в существовании самого явления.
В этой главе я не собирался предлагать каких-либо гипотез и объяснений. Я просто хотел показать, что описанные мною явления до сих пор остаются неисследованными. Научные эксперименты с домашними животными могли бы существенно расширить наши знания о них и способствовать пониманию их необычных способностей.
КАК ГОЛУБИ НАХОДЯТ ДОРОГУ К ДОМУ
Предисловие из личного опыта
В детстве я вместе с отцом ходил смотреть, как на железнодорожной станции выпускают большие стаи голубей. Это происходило по утрам каждую субботу, весной и летом. Именно к нам свозили соревнующихся птиц со всей Великобритании. В плетеных корзинах, поставленных одна на другую, голуби дожидались старта. В установленный момент судьи открывали дверцы и выпускали на волю сотни голубей, стаю за стаей, и взлетающие птицы поднимали настоящий ветер, в котором кружились облака перьев (ил. 1). Голуби взмывали в небо, какое-то время кружили над местом старта, а затем устремлялись по домам — далеко-далеко от нашей станции.
Я не уставал восхищаться этими птицами. Мне удалось познакомиться с судьями, и они разрешили мне выпускать голубей на старте. Поступив в школу, я сам завел нескольких почтовых голубей, но их погубила кошка. Потом я уехал учиться в школу-интернат и больше не мог держать у себя птиц.
Много лет спустя, в начале 70-х гг., уже будучи научным сотрудником Клэр-Колледж в Кембриджском университете, я вновь заинтересовался тем, как голуби находят дорогу домой, и попросил своих коллег-зоологов просветить меня в этой области. Вскоре выяснилось, что никто из них не знает точного ответа на этот вопрос. Ничего не удалось найти и в научной литературе. Все более или менее обоснованные гипотезы тщательно проверялись и в конце концов не находили подтверждения. Попутно я выяснил, что миграция птиц — такая же загадка, как и способность голубей возвращаться домой. Каким образом английские ласточки осенью мигрируют в Южную Африку, а весной возвращаются в Англию, причем в тот же самый дом, где в прошлом году они уже вили гнездо? Точного ответа на этот вопрос тоже никто не знал.
Ил. 1. Соревнующихся голубей выпускают из корзин на железнодорожной станции (Норман Фейк, масло; репродукция Питера Беннетта)
Я предположил, что способность птиц находить дорогу домой или возвращаться на постоянное место обитания после зимовки основана на каком-то свойстве, до сих пор не известном науке. Мне представлялось, что между птицей и ее домом существует какая-то непосредственная связь, вроде невидимой эластичной нити. Для проверки этой гипотезы я придумал простой и недорогой эксперимент, который впервые провел в Ирландии в 1973 г. К сожалению, довести эксперимент до конца не удалось, так как в 1974 г. мне пришлось уехать в Индию и заняться исследованиями в международном сельскохозяйственном институте. Только в 1980 г., когда я вернулся домой, у меня вновь появилась возможность исследовать необычные способности голубей, на сей раз в восточной Англии.
В этой главе я сначала изложу все, что до сих пор было известно о миграции птиц и их способности находить дорогу домой. Все привычные объяснения, построенные на современных научных принципах, уже проверены и оказались неправильными. Поведение птиц теперь кажется еще загадочнее, чем прежде. Обобщив опыт собственных исследований, я в общих чертах составил план эксперимента, который, задавшись целью пролить свет на эту загадку, могли бы провести любители голубей — поодиночке или силами целого клуба, а также школьники и студенты.
СПОСОБНОСТЬ НАХОДИТЬ ДОРОГУ К ДОМУ И МИГРАЦИЯ
Способность голубей находить дорогу к дому люди тысячелетиями использовали для передачи сообщений. Уже в книге Бытия можно прочесть о том, как голубь вернулся в ковчег Ноя со свежим масличным листом в клюве, принеся тем самым весть о конце Всемирного потопа[22]. В Древнем Египте существовала голубиная почта, и в современном Египте голубь до сих пор остается эмблемой почтового ведомства. Даже в XX в. голубей часто использовали для передачи различных посланий, не только в годы Первой и Второй мировых войн, но и в мирное время. В наши дни во всем мире насчитывается более 5 млн любителей, которые постоянно устраивают состязания голубей в перелете на расстояние до 500 миль, а иногда и на большие дистанции. Особенно популярен этот вид спорта в Бельгии, Великобритании, Голландии, Германии и Польше. Возвращаясь домой, голубь может за сутки преодолеть расстояние до 700 миль, а средняя скорость его полета составляет при этом более 60 миль в час.
Находить дорогу к дому способны далеко не одни только голуби[23]. Известно множество историй о различных сельскохозяйственных животных, даже о коровах, которые находили обратную дорогу, хотя их оставляли за много миль от дома. Разумеется, чаще всего в таких историях фигурируют собаки и кошки. Например, шотландская овчарка по кличке Бобби, оставленная в штате Индиана, вернулась домой, в штат Орегон, только на следующий год, преодолев расстояние более 2000 миль[24]. На основе этих реальных историй Шейла Бернфорд написала известный приключенческий роман “Невероятное путешествие”[25], по мотивам которого компания «Уолт Дисней» сняла одноименный фильм. Рома: повествует о том, как сиамская кошка и две собаки старый — бультерьер и молодой Лабрадор — в поиска; дома одолевают 250 миль пути через дикие места на се вере штата Онтарио. Сильнее всех стремится к дом Лабрадор:
«Казалось, он никогда не сможет забыть свою главную цель: он возвращается домой, — домой к своему хозяину, в дом, где он жил, а все остальное не имеет значения. Это страстное желание, эта уверенность заставляли его вести своих товарищей все время на север сквозь лесные дебри, по незнакомым местам, так же безошибочно, как летит к дому почтовый голубь»[26].
Такой способностью обладает и человек, и лучше всего она развита у кочевых народов, поскольку для них чувство правильного направления — необходимое условие выживания. В качестве примера можно назвать австралийских аборигенов, бушменов из пустыни Калахари (Южная Африка) и мореходов Полинезии.
Рекорд дальности при возвращении домой прочно удерживают птицы. Пингвины Адели, северные качурки, малые буревестники, темноспинные альбатросы, аисты, крачки, ласточки и скворцы — все эти птицы при возвращении домой преодолевают расстояние более тысячи миль[27]. К примеру, двух темноспинных альбатросов отловили на острове Мидуэй в центральной части Тихого океана и выпустили на волю на западном побережье США в штате Вашингтон, в 3200 милях от их родного острова. Один из них вернулся домой через десять дней, другой — через двенадцать. Еще один темноспинный альбатрос вернулся в родные места с Филиппин, преодолев 4000 миль за месяц с небольшим[28]. В эксперименте с малыми буревестниками птицы были отловлены на острове Скокхолм недалеко от побережья Уэльса. Одного буревестника выпустили в Венеции (Италия) — и он вернулся на родной остров через четырнадцать дней. Второй вернулся через двенадцать с половиной суток из Бостона (Массачусетс, США), пролетев над Атлантическим океаном более 3000 миль[29].
Очевидно, что такая способность возвращаться домой имеет много общего с сезонной миграцией перелетных птиц от одного места обитания к другому. Во многих случаях — к числу которых относится и миграция британских ласточек— миграция представляет собой систему двойного местообитания. Осенью ласточки летят к зимнему месту обитания, расположенному в восточной части Южной Африки, где в это время весна, а когда весна наступает в Северном полушарии, они возвращаются к своему дому в Великобритании[30].
Еще более удивительно то, что молодые птицы инстинктивно находят дорогу к зимнему месту обитания даже в тех случаях, когда самостоятельно совершают первый в жизни сезонный перелет без взрослых особей, уже знающих маршрут и способных указать правильный путь. Например, птенцы кукушки не знают свои: родителей — их выращивают птицы других видов. Взрослые особи этого вида улетают на зимовку в Южную Африку в июле или августе, примерно за месяц до того, как молодые птицы будут готовы к подобному перелету. Окрепнув, молодые кукушки объединяются в стаи и мигрируют к местам обитания в Африке, где присоединяются к взрослым птицам.
Даже некоторые насекомые могут преодолевать огромные расстояния, мигрируя туда, где прежде не бывали. К таким насекомым относятся бабочки данаиды, которые мигрируют между США и Мексикой. Осенью, когда все предыдущее поколение бабочек уже вымерло, новое поколение летит на юг. Например, данаиды, рожденные в районе Великих озер в восточной части США, преодолевают за время перелета около 2000 миль, а затем зимуют, миллионами усаживаясь на особые «деревья бабочек» в горной части Мексики. После спаривания на юге все это поколение вымирает. А следующее поколение весной мигрирует на север, к Великим озерам[31].
Каким образом мигрирующие животные узнают, в каком направлении следует двигаться? В отношении перелетных птиц наиболее популярна гипотеза о том, что они ориентируются по звездам и, кроме того, чрезвычайно чувствительны к магнитному полю Земли. Предполагается также, что в мозгу перелетных птиц заложена врожденная программа, управляющая процессом миграции, в которую входят карта звездного неба и, возможно, карта магнитного поля. В научной литературе ее называют «наследственной пространственно-временной векторно-навигационной программой»[32]. Гипотеза звучит внушительно, но на деле ничего не объясняет. Сложный научный термин лишь описывает проблему, а не решает ее.
Сторонники гипотезы об ориентации по звездам ссылаются на то, что перелетные птицы, которых в начале сезона миграции держали в клетках в планетарии, пытаются лететь в направлении привычной миграции, определяя его по движению искусственных звезд планетария. Но даже если звезды и могут служить компасом для перелетных птиц, чем объяснить тот факт, что птицы способны определять направление и днем, и в условиях сильной облачности?[33] Например, при слежении за птицами с помощью радара, установленного в округе Олбани (штат Нью-Йорк), было установлено, что даже сохраняющаяся в течение нескольких суток облачность в ночное время не вызывает дезориентации у ночных мигрирующих птиц различных видов. В отчете сообщалось, что «в полете птиц не наблюдалось даже малейших отклонений»[34].
Рыбы также способны мигрировать на сотни и тысячи миль, и в этом случае чувство направления уже невозможно объяснить способностью ориентироваться по звездам. Очевидно, что рыбы определяют направление за счет чего-то другого. Возможно, вблизи конечного пункта миграции важную роль играют знакомые запахи. Во всяком случае, так обстоит дело с лососем, который, как показали эксперименты, чувствует запах родной реки, когда приближается к ее устью[35]. Но и лосось не может по запаху определить направление к береговой линии, когда находится еще за тысячи миль от нужного места. Те же самые вопросы возникают, когда мы пытаемся объяснить миграцию морских черепах и других мигрирующих морских животных, перемещающихся под водой.
Как способность находить дорогу к дому, так и миграция животных до сих пор не объяснены наукой, и решение одной из этих проблем обязательно поможет прояснить и другую. Проводить исследования миграции — весьма сложная и трудоемкая научная работа. Гораздо проще изучать способность животных находить дорогу домой, и прежде всего это касается птиц. Лучше всего для такого исследования подходят почтовые голуби. У этих птиц способность находить дорогу к дому развита очень хорошо, тем более что почтовые голуби как порода выводились на основании отбора именно по этому признаку. Методы содержания, разведения и дрессировки голубей этой породы хорошо известны и относительно недороги.
На сегодняшний день в этой области уже проведено множество экспериментов, однако почти за сто лет сложных, но, по сути, безрезультатных исследований никто так и не выяснил, как именно голуби возвращаются домой. Все попытки объяснить их навигационные способности сигналами от известных органов чувств и влиянием изученных физических сил до сих пор безрезультатны. Исследователи честно признают наличие проблемы: «Способность птиц находить дорогу к дому и выбирать правильное направление полета во время миграции настолько устойчива и гибка, что до сих пор остается загадкой. Можно устранять сигнал за сигналом, ориентир за ориентиром, а у птиц все равно остается в запасе какая-то стратегия, которая позволяет им определять правильное направление полета»[36]; «Проблема навигации по существу остается нерешенной»[37].
А теперь мы по очереди рассмотрим все гипотезы, которыми объясняют способность голубей возвращаться домой, и я попытаюсь продемонстрировать, почему все они несостоятельны.
ЗАМЕЧАЮТ ЛИ ГОЛУБИ ВСЕ ИЗГИБЫ И ПОВОРОТЫ ДОРОГИ, КОГДА ИХ УВОЗЯТ ИЗ ДОМА?
Каким образом голуби, которых увозят в незнакомое место за сотни миль от дома, находят дорогу назад? За счет чего они определяют, в каком направлении лететь, чтобы добраться до дома?
Чарльз Дарвин был страстным любителем голубей и держал у себя в голубятне представителей различных пород[38]. В 1873 г. на страницах журнала «Нейчур» он высказал первую гипотезу по поводу того, как голуби находят дорогу домой. Дарвин полагал, что голуби запоминают все изгибы и повороты дороги, пока их увозят из дома, причем могут запомнить их даже в том случае, если всю дорогу находятся в закрытом ящике[39]. В следующей статье того же номера Дж.Дж. Мерфи предложил механическую аналогию этого процесса с шариком, свисающим с крыши железнодорожного вагона и реагирующим на толчки, вызываемые всеми изменениями направления и скорости:
«В механизм можно вмонтировать хронометр, что позволило бы регистрировать величину и направление всех этих толчков с указанием точного времени каждого. На основе этих данных можно будет вычислить положение вагона в любой момент времени, учитывая расстояние и направление... Более того, можно было бы придумать механизм, способный автоматически подсчитывать получаемые результаты, и тогда положение вагона можно было бы узнать в любой момент, не производя никаких дополнительных вычислений»[40].
Выражаясь языком современных технологий, речь шла о компьютеризированной инерционной системе навигации. При всей наглядности сложных механических аналогий все-таки трудно поверить в то, что спортивные голуби, запертые в корзинах и увозимые за сотни миль от дома в железнодорожных вагонах, грузовиках, кораблях и самолетах, совершающих по пути множество поворотов и других маневров, всю дорогу с величайшей точностью вычисляют направление, где находится дом.
В любом случае, эта гипотеза уже была проверена и отвергнута. В 1893 г. С. Экснер доказал, что голуби способны совершенно точно находить дорогу к дому даже в том случае, если в дороге они находятся под глубоким наркозом. Более поздние эксперименты с другими видами птиц— к примеру, серебристой чайкой — подтвердили выводы Экснера[41]. Голуби не теряют своих навигационных способностей и в том случае, если от дома до места освобождения из клетки их везут сложными и запутанными маршрутами, и даже тогда, когда их при этом перевозят в светонепроницаемом вращающемся барабане:
«Конструкция была неустойчивой, вследствие чего любые изменения в скорости или направлении движущегося автомобиля мгновенно замедляли вращение барабана. Таким образом, восприятие дороги птицами было значительно затруднено из-за изменений скорости вращения. За время самой продолжительной поездки барабан совершил около 1200 оборотов. Тем не менее характеристики проверяемой способности — выбор направления полета и время возвращения домой у голубей, перевозимых в барабане, были не хуже, чем у голубей контрольной группы»[42].
В Германии проводилась еще одна серия экспериментов такого рода. Во время транспортировки голубей из дома барабан вращался с большой скоростью — до девяноста оборотов в минуту — в переменном магнитном поле; при этом голуби не могли видеть окружающий ландшафт и ощущать какие-либо запахи, исходящие от тех мест, где их везли. «Тем не менее эти голуби так же хорошо выбирали направление полета к дому и так же быстро возвращались домой, как и голуби контрольной группы, которых перевозили в открытых клетках на крыше автофургона»[43].
И в заключение позволю себе напомнить, что, если бы птицы ощущали и подсчитывали все изгибы и повороты дороги во время перевозки, в этом непременно должны были бы участвовать соответствующие органы — полукружные каналы во внутреннем ухе, реагирующие на ускорение и вращение. Полное разрушение этих органов мешает нормальному полету птицы. В ходе некоторых экспериментов у голубей хирургическим путем перерезали горизонтальные ампулы, но птицы находили дорогу к дому не хуже обычного, хотя их выпускали из клеток на расстоянии 200 миль от него. По всем параметрам их результаты совпадали с результатами голубей из контрольной группы[44]. В других экспериментах, как говорится в сообщении, «голуби с различными повреждениями полукружных каналов, вызванными хирургическим путем, точно находили дорогу независимо от того, проходили испытания в солнечный день или в условиях сплошной облачности»[45]. Таким образом, гипотеза о существовании у птиц инерционной системы навигации должна быть отвергнута, и дальнейшие исследования в этом направлении бесперспективны[46].
ЗАВИСИТ ЛИ СПОСОБНОСТЬ ЖИВОТНЫХ НАХОДИТЬ ДОРОГУ К ДОМУ ОТ НЕЗЕМНЫХ ОРИЕНТИРОВ?
Иногда выдвигаются предположения, что способность находить дорогу к дому зависит от наличия привычных наземных ориентиров. Такое утверждение имеет смысл, когда голубей выпускают в нескольких милях от голубятни, а также в том случае, если при возвращении домой они всегда пролетают над знакомой территорией. В ходе одного исследования птиц выпустили с того же самого места в четвертый раз, и оказалось, что в этом случае они ориентировались по местным наземным знакам. «В седьмой раз голуби настолько хорошо запомнили местные ориентиры, что могли лететь домой наперегонки. Они действовали так, словно точно знали, что доберутся до дома, если сначала пролетят над ориентиром А, затем над ориентиром Б и так далее»[47]. Такое поведение свойственно и людям. Когда мы едем в новое место или по новому маршруту, мы всегда запоминаем ориентиры. Но мы не можем найти дорогу туда, где знакомых ориентиров пока что нет.
Голуби же в любом случае могут найти дорогу к дому, даже оказавшись в совершенно незнакомом месте, в сотнях миль от любой знакомой им территории. После того как их выпускают из клеток, голуби обычно делают круг, но могут и сразу направиться точно в сторону дома[48]. Они способны точно придерживаться правильного направления, даже пролетая над морем или совершая перелет в густом тумане, что великолепно продемонстрировали несколько голубей, использованных ВВС Великобритании во время Второй мировой войны. Опытные спортивные птицы, многие из которых были безвозмездно переданы любителями голубей, помещались в самолеты, совершавшие боевые вылеты в Германию над Северным морем. Если какой-то из самолетов сбивали, экипаж при первой же возможности прикреплял сообщение к лапкам одного или нескольких голубей, выпускал птиц и надеялся на лучшее.
Невероятные подвиги голубей занесены в официальный почетный список — «Список отличившихся на боевой службе». Некоторые птицы даже были награждены медалями (ил. 2). Вот официальное сообщение о голубке по кличке Уайт Вижн, которая родилась в городе Мазервелл (Шотландия), использовалась на базе ВВС Великобритании Соллум-Воу (Шетлендские острова) и была награждена медалью:
“Этот голубь был доставлен на гидроплан "Каталина" 11 октября 1943 года, приблизительно в 08:20, вследствие поломки двигателя совершивший вынужденную посадку на воду в условиях штормовой погоды на Северном море. Так как радиопередатчик самолета вышел из строя, наземные службы не могли ни принять сигнал SOS, ни зафиксировать место выхода в эфир... В 17:00 голубка Уайт Вижн доставила сообщение, в котором указывались координаты приводнения и другие сведения о гидроплане и его экипаже. Поиски на море были продолжены в указанном месте, и в 00:05 следующих суток самолет был обнаружен, а экипаж спасен. Гидроплан было решено оставить и затопить. Погодные условия: видимость в месте освобождения голубя — 100 ярдов; видимость на базе в момент прилета голубя — 300 ярдов; встречный ветер относительно полета голубя — 25 миль в час; сильное волнение на море; сплошная низкая облачность; расстояние до базы 60 миль; число спасенных летчиков — 11 человек”[49]. Как оказалось, использование зрительных ориентиров играет при поиске птицами направления к дому исключительно вспомогательную роль. Тем не менее до 70-х гг. большинство попыток объяснить эту способность у голубей было сосредоточено именно на изучении их зрения как главного органа чувств. Выдвигалось мнение, что в отсутствие знакомых наземных ориентиров птицы могут находить дорогу по солнцу или даже по звездам. Но все гипотезы, предполагавшие ведущую роль зрения, были опровергнуты серией замечательных экспериментов, проведенных в университете Дьюка (Северная Каролина, США) и в г. Геттингене (Германия). В ходе экспериментов в глаза голубей вставлялись матовые контактные линзы. Это настолько ухудшало зрение птиц, что они не узнавали знакомые предметы даже с расстояния около 6 метров. Голубям контрольной группы также вставляли контактные линзы, но прозрачные.
Ил. 2. Голубка Уинки и ее награды. Подвиг Уинки в «Списке отличившихся на боевой службе» описан так: «23 февраля 1942 года, возвращаясь с боевого вылета к прибрежным районам Норвегии, уже поврежденный самолет "Бофорт" совершил внезапную вынужденную посадку на воду и в результате сильного удара о воду получил дополнительные повреждения. Авария произошла в 120 милях от побережья Шотландии. Голубка Уинки в момент аварии случайно выбралась из контейнера, но, не успев взлететь, упала в масляное пятно на поверхности моря. Расстояние до базы составляло 129 миль, а до ближайшей суши — 120 миль, причем до наступления темноты оставалось всего полтора часа. Голубка добралась до базы на следующее утро, вскоре после рассвета, сильно утомленная, вымокшая и перепачканная маслом. Поиск экипажа с помощью авиации оказался безуспешным по причине очень слабого и неустойчивого радиосигнала. Сержант Дэвидсон из голубиной службы ВВС Великобритании, исходя из факта прилета голубки, ее состояния и некоторых других выводов, установил, что область поиска была выбрана неправильно. В соответствии с рекомендациями сержанта поиск возобновили в указанной им части моря. Через 15 минут экипаж был обнаружен, и началась спасательная операция. Спасенный экипаж дал обед в честь голубки и ее инструктора» (Осмен и Осмен, 1976).
Когда птиц с матовыми контактными линзами выпустили из клеток, “многие из них отказывались взлетать, некоторые парили над одним и тем же местом, а некоторые падали на землю поблизости от места взлета. Часть птиц натыкалась в полете на провода, деревья и другие объекты. Но какая-то часть голубей высоко взлетела и исчезла в небе на огромной высоте”. Эти голуби летели очень необычно: тела птиц располагались не горизонтально, а с отклонением вверх. Неуверенность их полета быстро заметили ястребы, которые принялись охотиться на таких голубей[50]. Некоторые птицы, пролетев часть пути к дому, садились на землю и некоторое время отдыхали[51]. В результате часть голубей все-таки добралась до дома, который был удален от места взлета более чем на 80 миль. “Птицы с ослабленным зрением обычно подлетали к голубятне на очень большой высоте, а затем начинали осторожно парить и постепенно снижаться. Некоторые из них опустились точно, но подавляющее большинство приземлилось мимо голубятни. Всех птиц можно было бы легко поймать руками”[52]. Итак, птицам было сложно приземлиться точно на голубятню, поскольку в знакомом месте они привыкли ориентироваться с помощью зрения, и это неудивительно. Тем не менее поражает способность голубей даже со значительно ослабленным зрением добраться до голубятни.
Руководитель группы исследователей из Геттингена Клаус Шмидт-Кениг обобщил результаты экспериментов, в которых поведение голубей с матовыми контактными линзами изучалось, среди прочего, с помощью радиослежения. Он пришел к следующему выводу:
“При возвращении голубей домой видимые наземные сигналы не играют существенной роли в навигационном отношении. Навигационная система голубей практически не зависит от зрения и позволяет им с удивительной точностью подлетать к нужному месту. Оказалось, что птицы точно определяют, когда оказываются вблизи своей голубятни, а пролетая мимо, знают, что начинают вновь удаляться от дома”[53].
ОПРЕДЕЛЯЮТ ЛИ ГОЛУБИ ДОРОГУ К ДОМУ ПО СОЛНЦУ
В 50-е гг. главенствующей гипотезой в отношении навигационных способностей голубей была теория “солнечной дуги”, выдвинутая Дж.В.Т. Мэтьюзом. Он предположил, что птицы использовали комбинацию высоты подъема солнца над линией горизонта и дуги, продолженной по небу от солнца до точки наблюдения за его движением, а также точнейший “внутренний хронометр”. Например, голубь, которого везли в юго-западном направлении, мог бы определить, что солнце находится в небе необычно высоко и восточнее (если, предположим, наблюдение ведется в утренние часы), чем это было в том месте, где расположена его голубятня. На основании этого голубь в принципе мог бы “вычислить” положение дома[54].
Против этой гипотезы существует несколько серьезных аргументов. Голуби способны находить дорогу к дому и в условиях сплошной низкой облачности, и даже в том случае, если их глаза закрыты матовыми контактными линзами; наконец, они способны лететь домой и ночью[55]. Более того, птицы находят дорогу домой и в тех случаях, когда их “внутренние часы” серьезно повреждены, а гипотеза Мэтьюза предполагает чрезвычайно точный отсчет времени.
Была проведена серия экспериментов, в которых “внутренние часы” голубей искусственно сдвигались. Для этого голубей в дневное время держали в темноте, а ночью — при искусственном освещении. Например, за шесть часов до восхода солнца включали свет, а за шесть часов до наступления темноты голубей помещали в светонепроницаемую клетку. Таким образом, за две недели “внутренние часы” птиц переводились вперед на шесть часов. Когда этих голубей выпустили на волю, они полетели влево перпендикулярно правильному направлению к дому. И наоборот, те птицы, чьи “внутренние хронометры” опаздывали на шесть часов, полетели вправо перпендикулярно правильному направлению. Наконец, те птицы, чьи “внутренние часы” были сдвинуты на двенадцать часов, полетели в направлении, противоположном правильному[56].
На первый взгляд такие результаты полностью подтверждают гипотезу Мэтыоза. Но в действительности результаты опытов говорят лишь о том, что голуби могут использовать положение солнца в качестве своего рода компаса. Но одним только “компасом” объяснить способность голубей находить дорогу к дому все равно невозможно. Представим, что вас сбросили на парашюте в незнакомом месте. Вам дали точные часы, но не снабдили картой. Наблюдая за положением солнца в различные дневные часы, вы сможете точно определить, в какой стороне от вас располагаются север, юг, восток и запад, но направление, в котором находится дом, вы таким образом не установите.
Мэтьюз утверждал, что голуби используют “внутренние часы” в сочетании с положением солнца и “солнечной дуги”, проложенной в небе до места наблюдения, не в качестве компаса, а в качестве своего рода карты, позволяющей им определять направление и расстояние от места вылета из клетки до дома. Но эта гипотеза не может объяснить, как птицы отыскивают дорогу к дому, если полет проходит в условиях сплошной низкой облачности или ночью. К тому же в нее совершенно не укладывается тот факт, что птицы со сдвинутыми “внутренними часами” после начальной ошибки, в определении направления по “солнечному компасу” некоторое время спустя все-таки находили правильный путь к дому[57]. Интересно отметить, что в тех случаях, когда полет птиц со сдвинутыми “внутренними часами” проходил в условиях сплошной низкой облачности, они сразу выбирали правильное направление к дому и прилетали туда так же быстро, как и голуби контрольной группы[58].
Таким образом, можно подтвердить лишь тот факт, что в ясные дни “солнечный компас” играет определенную роль в выборе первоначального направления полета голубей после того, как их выпустят из клетки. Но этот факт все равно не может полностью объяснить способность птиц находить дорогу к дому.
Когда в моде была теория “солнечной дуги”, некоторые исследователи попытались объяснить способность голубей находить дорогу к дому в условиях сплошной низкой облачности, предположив, что птицы реагируют на поляризованный свет, проникающий сквозь облака. Как известно, некоторые насекомые, прежде всего пчелы чувствительны к поляризованному свету и способны ориентироваться в пространстве, если могут видеть хотя бы кусочек голубого неба, — даже когда само солнце плотно закрыто облаками.
Однако в гипотезе поляризованного света есть два существенных изъяна. Во-первых, даже если бы голубе могли определять положение солнца по поляризованному свету с частично открытых участков неба, само по себе это не объясняет их способность находить дорогу к дому: ведь ориентирование по солнцу, как мы уже убедились, не играет ведущей роли в определении искомого направления. Во-вторых, в отличие от пчел, голуби не обладают чувствительностью к поляризованному свету[59].
Еще одна необычная форма сенсорного восприятия, которой иногда пытаются объяснить уникальные навигационные способности голубей, — чувствительность к инфразвуку. Как показали лабораторные эксперименты, эти птицы необычайно чувствительны к низкочастотным звукам, но это вовсе не доказывает, что голуби способны слышать свой дом, находясь от него за сотню или даже всего за несколько миль. Поэтому идею, что голуби могут находить свой дом по характерным низкочастотным звукам, нельзя даже назвать гипотезой, настолько она неправдоподобна и беспочвенна.
ЗАВИСИТ ЛИ СПОСОБНОСТЬ ГОЛУБЕЙ НАХОДИТЬ ДОРОГУ К ДОМУ ОТ ОБОНЯНИЯ?
Сверхъестественные способности и загадки в поведении животных нередко объясняют чрезвычайно острым обонянием. За последние двести лет в этом отношении сложилась целая традиция, и навигационные способности голубей не исключение. Но даже на первый взгляд такая идея представляется невероятной[60]. К примеру, предположим, что спортивный голубь, выпущенный в Испании, возвращается домой в Великобританию. Может ли голубь, выпущенный в Барселоне, понять, где он находится, принюхиваясь к местным запахам, или каким-то образом уловить запах своего родного дома в далеком Суффолке? Каким образом он может найти дорогу домой по запаху, если дует сильный ветер, да еще и не встречный, а попутный? Очевидно, что это невозможно. Голуби могут находить дорогу к дому, перелетая из Испании в Великобританию, независимо от направления ветра, и это доказывает, что их удивительные навигационные способности объясняются вовсе не обонянием. Яркое тому подтверждение — соревнования, проводимые на северо-востоке Бразилии, где, за редчайшими исключениями, практически круглый гол дует юго-восточный ветер. Тем не менее бразильские любители голубиного спорта регулярно и весьма успешно запускают своих птиц с юга[61].
Первоначальные гипотезы о ведущей роли обоняния в навигационных способностях голубей предполагали, что у этих птиц есть особый орган чувств, расположенный в легочных альвеолах. Позднее обнаружилось, что птицы, у которых легочные альвеолы проколоты иглой, все равно находят дорогу к дому без каких-либо проблем. Затем были исследованы носовые полости. У экспериментальной группы голубей носовые полости заклеивались воском, но это никак не отражалось на их способности определять дорогу к дому. Все эти исследования были проведены уже к 1915 г.[62]
К гипотезе обоняния, наряду с гипотезой магнитного поля, ученые вернулись в 70-е гг., когда были опровергнуты все остальные теории. Флориано Папи и его итальянские коллеги предположили, что в мозгу у голубей формируется обонятельная карта ближайших окрестностей, связывающая различные запахи с направлением ветра. Например, если к северу от голубятни располагается сосновый лес, северные ветры ассоциируются у птиц с запахом сосны. Когда голубей выпускают вдали от дома, им достаточно понюхать воздух, чтобы определить нужное направление. А для того чтобы объяснить, как голуби находят дорогу к дому в тех случаях, когда их выпускают на волю очень далеко от дома, где обонятельная карта знакомых мест никак не может им помочь, Папи предположил, что птицы запоминают все запахи, пока их везут к месту освобождения.
Папи и его коллеги провели серию замечательных опытов, доказывающих, что голуби действительно испытывают влияние запахов, связанных с направлением ветра[63]. Например, голубей выращивали в условиях, когда они могли ощущать только два запаха: запах оливкового масла, приносимый южным ветром, и запах синтетического скипидара, приносимый северным. Затем птиц выпускали, нанеся на их ноздри вещество с одним из этих запахов, и голуби в первый момент действительно выбирали неверное направление полета — то, с которым ассоциировался запах[64].
Большинство попыток повторить эксперименты Папи в Германии и США дали противоречивые результаты, и никаких убедительных доказательств алияния запахов на навигационные способности голубей получено не было[65]. Итальянские ученые также не смогли объяснить, каким образом обоняние может влиять на способность голубей находить дорогу к дом^. Даже если птицы, преднамеренно сбитые с курса, поначалу и летели в неверном направлении, рано или поздно они все равно находили правильный путь и всегда возвращались домой. Многие из экспериментальных птиц возвращались в голубятню так же быстро, как и голуби контрольной группы. Птицы с заклеенными ноздрями, с сильно поврежденными обонятельными нервами или с трубками в ноздрях, не позволяющими воздуху воздействовать на эпителий, тоже все-таки находили дорогу домой, хотя возвращались позднее, чем голуби контрольной группы, не подвергавшиеся хирургическим операциям.
Итальянские исследователи настаивали на том, что более позднее возвращение экспериментальных птиц подтверждает гипотезу о ведущей роли обоняния в навигационных способностях голубей[66]. Однако их скептически настроенные коллеги из Германии и США высказали предположение, что более позднее возвращение могло быть следствием полученной травмы. Для того чтобы проверить это предположение, в Германии провели еще один эксперимент: у части голубей эпителий с окончаниями обонятельных нервов был обработан ксилокаином — сильнодействующим препаратом для местной анестезии, что полностью блокировало обоняние голубей, но при этом не травмировало птиц. Как и следовало ожидать, эти голуби вернулись домой так же быстро, как и птицы контрольной группы[67]. В других экспериментах ксилокаиновая анестезия только замедляла возвращение, но не мешала определить верное направление полета[68].
Из всего изложенного можно заключить, что обоняние иногда оказывает определенное влияние на навигационные способности голубей, но само по себе оно не может полностью объяснить, каким образом птицы находят дорогу к дому.
ЗАВИСЯТ ЛИ НАВИГАЦИОННЫЕ СПОСОБНОСТИ ГОЛУБЕЙ ОТ ВОСПРИЯТИЯ МАГНИТНОГО ПОЛЯ?
В 70-е — 80-е гг. гипотеза об определяющей роли магнетизма стала наиболее популярной среди профессиональных исследователей в большинстве стран (кроме Италии, где до сих пор на первом месте стоит теория ведущей роли обоняния). Суть этой гипотезы заключается в том, что для возвращения домой голуби могут использовать карту магнитных полей. Заранее предполагается, что голуби чрезвычайно чувствительны к магнитному воздействию и за счет этого способны не только определить направление его воздействия, но и почувствовать изменение магнитного поля Земли при перемещении из одного места в другое.
Гипотеза строится на том, что определить направление по магнитному полю Земли можно было бы двумя способами. Во-первых, сила поля, достигающая максимального значения на полюсах, уменьшается при движении от полюсов к экватору. Во-вторых, угол магнитного поля относительно земной поверхности также меняется при движении от полюсов к экватору. Стрелка компаса на полюсах направлена вертикально вниз, а на экваторе — располагается горизонтально. На всех остальных территориях она будет менять угол отклонения от вертикали в зависимости от широты: в высоких широтах ее положение будет ближе к вертикали, а в низких — к горизонтали. Если бы голуби могли чувствовать изменение силы или угла магнитного поля, они могли бы и определять, насколько далеко их переместили в северном или южном направлении.
С чисто теоретической точки зрения эта гипотеза вызывает по крайней мере три серьезных вопроса. Во-первых, изменения силы и угла магнитного поля чрезвычайно малы. Например, если мы находимся на северо-востоке США, то при перемещении на 100 миль в направлении с севера на юг средняя величина магнитного поля меняется менее чем на один процент, а угол магнитного поля — менее чем на один градус. Во-вторых, магнитное поле Земли далеко не однородно и может сильно изменяться в зависимости от состава земной коры. Некоторые из таких магнитных аномалий невелики по площади и простираются на несколько сотен ярдов, но встречаются и очень крупные аномалии, которые тянутся на многие сотни миль. В некоторых случаях магнитное поле внутри таких аномалий может в восемь раз превышать по силе магнитное поле Земли. Более того, магнитное поле не постоянно: в нем наблюдаются как небольшие суточные флуктуации, так и сильные отклонения во время магнитных бурь, возникновение которых связано с пятнами на Солнце. При определении положения относительно севера и юга такие изменения могли бы вызвать «погрешность» в десятки и сотни миль[69].
Кроме того, даже будь голуби настолько чувствительны к магнитным полям, что могли бы точно определить, как далеко их увезли в северном или южном направлении, даже будь они каким-то образом способны вводить поправку на магнитные аномалии и флуктуации магнитного поля в различное время суток, само по себе магнитное поле ничего не может сообщить о перемещениях в направлении восток — запад. Если бы голубей увезли от дома в восточном или западном направлении, угол и сила магнитного поля на новом месте были бы точно такими же, как и дома, и потому птицы не могли бы определить, где располагается их дом. Однако голуби одинаково хорошо находят дорогу к дому, если их увезти в западном, восточном и любом другом направлении. Даже если голуби используют силу или угол магнитного поля Земли для того, чтобы получить сведения о своем перемещении в направлении север — юг, у них должна быть еще одна система, позволяющая ощутить перемещения в направлении восток — запад. Таким образом, магнетизм в принципе может объяснить навигационные способности голубей лишь частично.
Можно предположить, что птицы используют своего рода «магнитный компас», а не «магнитную карту». Но, как и «солнечный компас», «магнитный компас» не может служить объяснением. Сам по себе «компас» не может указать, в каком направлении находится дом.
Идею о том, что навигационные способности голубей могут в той или иной мере объясняться чувствительностью к магнитному полю Земли, впервые выдвинули еще в 1855 г., хотя доказать ее в то время было чрезвычайно трудно. До сих пор периодически возникают новые теории, основанные на этой идее[70]. Вплоть до 70-х гг. научная общественность относилась к этой гипотезе с большим скептицизмом, и прежде всего сомнению подвергалось предположение о том, что живой организм способен ощущать столь малые изменения магнитного поля. Однако точные эксперименты, проведенные в Германии в 60-х гг., убедительно показали, что птицы действительно способны чувствовать магнитное поле. Перелетных птиц перевозили в клетках именно в то время, когда на воле они должны были мигрировать.
Неудивительно, что птицы вели себя необычно. Исследователи назвали такое поведение «миграционным беспокойством»: птицы метались в клетках, пытаясь двигаться в том направлении, в котором на воле осуществлялся бы их перелет. Если направление магнитного поля вокруг клеток менялось на противоположное, птицы устремлялись в другую сторону — в соответствии с новым направлением поля. Если угол магнитного поля менялся на 90°, направление скачков птиц также менялось на 90°[71]. К 70-м гг. уже несколько групп исследователей заинтересовались влиянием магнитного поля на навигационные способности голубей. Было даже обнаружено влияние слабых магнитных полей на пространственную ориентацию человека[72].
Гипотеза ориентации по магнитному полю, первоначально отвергнутая как совершенно абсурдная, в наши дни принимается вполне благожелательно и считается вполне научным объяснением навигационных способностей птиц во время миграции, тем самым оберегая академическое сообщество от появления еще более странных теорий. Магнетизм по-прежнему в почете, и вы сами можете легко в этом убедиться, заведя с кем-нибудь разговор о проблеме миграции птиц или о способности голубей находить дорогу к дому. Многие научно информированные собеседники, несомненно, ответят вам, что эти необычные способности птиц объясняются чувствительностью к магнитному полю Земли, но едва ли сумеют уточнить подробности.
А подробности таковы. Существуют три группы экспериментальных доказательств влияния магнитных полей на навигационные способности голубей, но ни одно из этих доказательств не позволяет утверждать, что именно магнетизм позволяет птицам находить дорогу к дому.
Во-первых, голуби иногда теряют ориентацию, если их выпускают из клеток на территории магнитных аномалий. Одно из таких мест — месторождение Айрон-майн-хилл в штате Род-Айленд (США)[73]. Но несмотря на дезориентацию в первый момент после освобождения из клетки, голуби все-таки находят дорогу к дому. Более того, только часть птиц ощущает необычное воздействие магнитного поля. Например, когда голубей выпускали в Айрон-майн-хилл, то птицы, доставленные туда из города Линкольн (Массачусетс), первоначально теряли правильную ориентацию, а птицы, доставленные из города Итака (штат Нью-Йорк), сразу летели к дому в правильном направлении[74].
Во-вторых, оказалось, что голуби испытывают влияние магнитного поля во время магнитных бурь, когда повышается солнечная активность. Обнаружено, что в такие периоды время, которое голуби затрачивают на возвращение домой, увеличивается[75]. Однако и магнитные бури могут влиять лишь на первоначальное направление, в котором птицы устремляются после освобождения из клеток, а в среднем отклонения от правильного курса весьма незначительны и составляют всего несколько градусов. И несмотря на неправильный выбор первоначального направления, все птицы, выпущенные в магнитную бурю, в конце концов прилетали домой[76].
В-третьих, голубей подвергали воздействию магнитного поля, чтобы определить, насколько при этом ухудшатся их навигационные способности. Большинство экспериментов, проводившихся с 20-х гг., показали, что заметного эффекта не наблюдается. Некоторые из первых положительных результатов были в 1969 г. получены Уильямом Китоном из университета Корнелла в городе Итака (штат Нью-Йорк). Он и его коллеги прикрепляли к головам или к спинам птиц небольшие постоянные магниты. Голубям контрольной группы вместо магнитов прикреплялись латунные стержни той же массы. В солнечные дни результаты птиц из экспериментальной и контрольной групп были практически одинаковыми. Как показали эксперименты, проведенные в 1969—1970 гг., при низкой облачности птицы из экспериментальной группы в момент освобождения теряли чувство ориентации, хотя потом все равно находили правильную дорогу к дому. В последующих экспериментах, которые в начале 70-х гг. проводились другими исследователями, на головах или шеях птиц закреплялись катушки Гельмгольца. У птиц экспериментальной группы по катушке пропускался электрический ток, в результате чего генерировалось магнитное поле. В солнечные дни результаты птиц из экспериментальной и контрольной групп были практически одинаковыми. В дни сплошной низкой облачности исследователи вновь обнаружили, что голуби из экспериментальной группы сразу после освобождения из клетки теряли ориентацию, но в итоге все равно прилетали домой[77].
Необходимо отметить, что результаты, доказывающие влияние магнитов на навигационные способности птиц в дни сплошной облачности, были недостаточно воспроизводимы даже у самого Китона[78]. Описывая ранние эксперименты, он сам указывал на «настораживающий разброс в полученных результатах»[79]. С 1971 по 1979 гг. Китон безуспешно пытался получить свои первоначальные данные повторно. Отрицательные результаты его последних экспериментов так и остались неопубликованными, а в 1980 г. Китон скончался. Анализ результатов по всем тридцати пяти его экспериментам был опубликован Брюсом Муром в 1988 г. В более поздних экспериментах начальная дезориентация голубей, обнаруженная в 1969—1970 гг., не подтвердилась. Кроме того, даже в первом исследовании не было выявлено сколь-нибудь значительного воздействия постоянных магнитов на навигационные способности голубей:
«В 1969—1970 гг. птицы с магнитами несколько медленнее покидали место освобождения из клетки, чем те птицы, которых выпускали с латунными стержнями, однако в 1971 —1979 гг. значительно их опережали. И в том и в другом случае воздействие имело место, но было направлено противоположным образом, и его нельзя считать статистически значимым. Три четверти птиц из экспериментальной и контрольной групп добирались до дома в день освобождения из клетки. (...) Итак, общие потери в скорости были одинаковыми: по 26 птиц, или по 9%, — как среди голубей с магнитами, так и среди голубей без магнитов»[80].
Чувствительность голубей к магнитному полю проверялась и в лабораторных условиях. Подавляющее большинство опубликованных результатов свидетельствует о том, что магнитное поле не оказывает заметного влияния на навигационные способности голубей; а к тому же множество отрицательных результатов осталось неопубликованным[81]. Чарльз Уолкотт, один из ведущих специалистов в этой области, пришел к следующему выводу:
«Оценив количество отрицательных результатов и сопоставив его с положительными результатами явно случайного характера, очень трудно поверить, что голуби могут использовать изменения величины и направления магнитного поля в качестве ориентиров для своей "навигационной карты"»[82].
Гипотеза о влиянии магнитного поля на навигационные способности голубей была, по всей видимости, последней серьезной попыткой объяснить это уникальное явление. Многие держались за нее с цепкостью утопающего, который хватается за последнюю соломинку. В наши дни эта гипотеза также отвергнута.
Среди профессиональных исследователей теперь господствуют версии, что способность голубя находить дорогу объясняется комплексом целого ряда «резервных систем»; что она является «многофакторной», включая в себя такие системы обработки очень слабых сигналов, как «солнечный компас», обоняние и регистрация малейших изменений направления и силы магнитного поля; либо же голубь использует для определения дороги к дому какой-то один (неустановленный) тип информации, «но считывает ее с помощью нескольких сенсорных систем»[83]. Однако вся эта эффектная научная терминология лишь маскирует полное невежество. Ортодоксальные объяснения просто-напросто исчерпали себя.
СУЩЕСТВУЕТ ЛИ ОСОБЫЙ ОРГАН ЧУВСТВ, ПРИ ПОМОЩИ КОТОРОГО ГОЛУБИ ОПРЕДЕЛЯЮТ НАПРАВЛЕНИЕ?
С каждым годом становится все очевиднее, насколько сложно найти объяснение навигационным способностям птиц, основываясь на общепринятых научных представлениях, — ив наше время эта проблема выступила яснее, чем когда-либо. На протяжении десятилетий нет-нет да и всплывали гипотезы о некоем до сих пор не известном «чувстве направления», «ориентационной способности», «чувстве местоположения», «шестом чувстве» и даже «экстрасенсорном восприятии» (ЭСВ). В начале 50-х гг. в защиту теории ЭСВ выступили несколько парапсихологов, в первую очередь Д.Б. Райн[84] и Дж.Дж. Пратт[85] из лаборатории парапсихологии при Университете Дьюка (Северная Каролина). Сторонники академических взглядов игнорировали все подобные идеи, самоуверенно заявляя, что объяснение уникальной способности голубей находить дорогу к дому уже практически найдено и опирается на проверенные научные принципы. В 50-е гг. казалась почти доказанной теория «солнечной дуги» (в наши дни полностью развенчанная). Ее главный сторонник Дж.В.Т. Мэтьюз безапелляционно заявлял следующее:
«В популярных книжках то и дело всплывают эксцентричные теории, предполагающие необычной природы "излучение", якобы исходящее из места обитания птиц. Райн (1951) и Пратт (1953, 1956) предположили, что в основе способности голубей находить дорогу к дому лежит экстрасенсорное восприятие. Однако (...) относительно принципа работы подобной системы парапсихологи не дают никаких дополнительных пояснений, хотя они немало заинтересованы в объяснении навигационных способностей птиц — правда, лишь потому, что это явление пока необъяснимо с точки зрения физиологии органов чувств. Причину такого интереса ясно показал Мэтьюз (1956), и после этого в данной области наблюдается лишь слабая активность. Также следует упомянуть и отвергнуть невнятные теории какого-то особенного "чувства пространства", которые ничего не значат и ничего не объясняют»[86].
Консерваторы от науки все еще цепляются за веру в то, что рано или поздно удивительным навигационным способностям птиц будет найдено академическое объяснение. Но существование особого рода сил, еще неизвестных науке, в наши дни кажется не только возможным, но и весьма вероятным.
ПРЯМАЯ СВЯЗЬ МЕЖДУ ГОЛУБЯМИ И ИХ ДОМОМ
Я предполагаю, что способность голубей точно определять, где находится их дом, объясняется какой-то связью, подобно эластичной нити соединяющей птиц с домом и помогающей найти к нему дорогу. Когда голубей увозят из дома, «нить» растягивается. Если в момент возвращения птицы пролетают мимо дома — как это наблюдалось в экспериментах с голубями, у которых на глазах были матовые контактные линзы, — «нить» снова растягивается и заставляет птиц повернуть обратно к дому.
Я не знаю, как именно работает эта связь. Ее функционирование может быть сродни нелокальным связям, существование которых предполагает современная квантовая физика. Впервые о них заговорили в связи с парадоксом Эйнштейна, Подольского и Розена. Эйнштейн считал, что нелокальные следствия квантовой теории абсурдны. Он отвергал возможность образования мгновенной связи между двумя отдельными квантовыми системами, которые ранее образовывали единое целое. Но в форме теоремы Белла нелокальность на квантовом уровне в 1982 г. была экспериментально проверена Аленом Аспектом. Оказалось, что Эйнштейн был не прав.
«Из утверждения, что никакой процесс не может протекать со скоростью, превышающей скорость света в вакууме, следует, что две частицы, взаимодействуя друг с другом, должны быть каким-то образом связаны в единое целое, по существу, представлять собой элементы общей неделимой системы. Это свойство "нелокальности" имеет очень серьезные следствия. Мы можем представить себе Вселенную как огромную сеть взаимодействующих частиц, и каждая связь объединяет взаимодействующие частицы в единую квантовую систему. (...) И хотя на практике космос для нас слишком велик и сложен, хотя мы не можем заметить слабые сигналы этих связей (за исключением особых экспериментов типа эксперимента Аспекта), все это придает квантовому описанию Вселенной явный холистический оттенок»[87].
Можно предположить, что связь между голубем и его домом основана примерно на тех же нелокальных квантовых явлениях. А возможно, дело обстоит иначе и эта связь обусловлена полем или взаимодействиями иного рода, еще неизвестными физике. Я оставляю этот вопрос открытым.
Связь между голубем и его домом можно описать и в понятиях современной динамики. В математических моделях динамических систем сами системы движутся в пространстве поля по направлению к аттракторам[88]. С этой точки зрения голубь, ищущий свой дом, может быть представлен как некое тело, движущееся внутри векторного поля по направлению к аттрактору, которым в данном случае выступает голубятня как цель полета.
Метафору «эластичной нити» я предлагаю лишь для того, чтобы представить идею в самом простом и доступном виде. «Нить» дает голубям ощущение верного направления и обеспечивает возвращение домой даже в тех случаях, когда птицы не могут запомнить дорогу, по которой их увозили из дома, когда они не могут воспользоваться «солнечным компасом», не могут ощущать запахи и чувствовать изменения магнитного поля Земли. Эта «нить» помогает птицам преодолевать препятствия, навязанные учеными в ходе экспериментов, — погодные условия с особо низкой и плотной облачностью, темное время суток, умышленный сбой биологических часов, блокировку обоняния (в том числе обработку органов обоняния анестезирующими препаратами), не позволяющую ориентироваться по знакомым запахам, наличие на теле магнитов, перевозку во вращающемся барабане, ослепление посредством матовых контактных линз и перерезание нервов в органах чувств.
Когда голубя увозят из дома, «нить» растягивается. Но в таком случае она должна растягиваться, и когда дом увозят от голубя. На этом я и построил эксперимент, который предлагаю провести. Вместо того чтобы увозить голубей от голубятни, попробуем увезти голубятню от голубей. Смогут ли птицы найти свой исчезнувший дом?
В предлагаемом эксперименте надо использовать передвижные голубятни. Известно, что голуби способны возвращаться в передвижные голубятни с таким успехом, как и в стационарные, и в XX в. Передвижные голубятни широко использовались в военных целях.
ИСПОЛЬЗОВАНИЕ ПЕРЕДВИЖНЫХ ГОЛУБЯТЕН В ВОЕННЫХ ЦЕЛЯХ
В 1914 г., к началу Первой мировой войны, бельгийская, французская, итальянская и германская армии располагали службами голубиной почты и большим количеством голубятен с обученными птицами. В то время уже существовали передвижные голубятни, предназначенные для того, чтобы птиц можно было использовать при наступлении или отступлении войск. Британская армия оказалась совершенно неподготовленной в этом отношении, но после начала войны удалось быстро создать Службу почтовых голубей — в первую очередь благодаря энтузиазму британских любителей и умелому руководству полковника Э.Г. Осмена, возглавившего эту службу. До и после войны Осмен был редактором журнала «Рейсинг пиджн», который до сих пор остается ведущим британским изданием в области разведения и обучения спортивных голубей. Книга Осмена «Голуби в мировую войну»[89] стала полным отчетом о героических усилиях голубиной службы в военное время. Осмен рассказывает, как голубиная служба ВМФ Великобритании посылала птиц на занятые разминированием тральщики. Голуби доставляли сообщения в свои голубятни, а оттуда эти сведения немедленно пересылались в Адмиралтейство. Первые сообщения о нападении дирижаблей на флот тральщиков были доставлены именно голубями. Кроме того, сотрудники «Интеллидженс сервис» — сети разведывательных и контрразведывательных служб Великобритании — засылали голубей на оккупированную германскими войсками территорию Бельгии. На воздушные шары устанавливались часовые механизмы, позволявшие через определенные промежутки времени сбрасывать корзины с птицами на землю с малой высоты. Эти корзины опускались на маленьких парашютах и содержали просьбу к бельгийцам посылать с помощью голубей информацию военного характера. Рискуя поплатиться жизнью, поскольку германские власти карали смертью всех, кто сообщал какие-либо сведения англичанам, многие бельгийцы все же решались на это. Помимо этого «Интеллидженс сервис» сбрасывала на парашютах за линией фронта своих агентов, у каждого из которых за спиной находилась корзина с хорошо обученными почтовыми голубями. С их помощью агенты пересылали свои сообщения.
Передвижные голубятни были созданы вскоре после начала войны. К концу войны, в 1918 г., в британской армии их было уже более ста пятидесяти, а в голубиной службе армии США насчитывалось по крайней мере пятьдесят. Некоторые из передвижных голубятен перемещались на конной тяге, другие были механизированы (ил. 3). В мотоциклетных колясках или на крупах лошадей голубей подвозили к самой передовой и использовали для передачи сообщений в тех случаях, когда невозможно было воспользоваться ни радио, ни какими-либо другими средствами связи. Птицы летели к своим передвижным голубятням даже в условиях сильного артобстрела, и многие из них были награждены за храбрость. Один британский голубь удостоился высшей военной награды в Великобритании — Креста Виктории, а один французский голубь — ордена Почетного легиона. Американской героиней стала голубка Винки:
«Ее последний полет (...) был самым отчаянным, но она отважно преодолела все преграды и доставила сообщение, хотя одна лапка была перебита и сильно кровоточила. Доставленное сообщение было чрезвычайно важным и поступило от отряда, который оказался в критическом положении. Посланное подкрепление спасло положение, и бойцы из спасенного подразделения поклялись молиться за отважную голубку»[90].
Во время Второй мировой войны передвижные голубятни использовались британской армией в Северной Африке, а также голубиной службой Индийской армии в Бирме[91]. Кроме того, голубиная служба Индийской армии разработала систему полетов «бумеранг», в которой голуби обучались находить передвижные голубятни, где они получали корм, а затем возвращаться в стационарную голубятню на ночлег. Одних и тех же птиц можно было использовать для передачи сообщений в двух направлениях[92]. Подобная система с успехом применялась и голубиной службой британской армии в Алжире и Тунисе[93]. В настоящее время двусторонняя система передачи сообщений с помощью голубей и передвижных голубятен развивается в Швейцарии. Таким образом обучает птиц голубиная служба швейцарской армии[94]. Это одна из последних ныне действующих военных служб, использующих почтовых голубей. Еще одна подобная служба продолжает действовать в Китае.
Голуби хорошо приспособились к возвращению в голубятни в условиях военного времени. Полковник Осмен сообщает, что во время Первой мировой войны «птицы находили свой дом, где бы он ни располагался». К сожалению, мне так и не удалось точно выяснить, как именно использовались передвижные голубятни. Возможно, в большинстве случаев голубятня перемещалась с находящимися внутри птицами. Вероятно, у голубей была возможность привыкнуть к новой окружающей среде, прежде чем их отправляли с сообщением. В таком случае возвращение птиц в передвижную голубятню не вызывает особого удивления.
Но передвижные голубятни также использовались на морских судах. Во время Первой мировой войны ВМФ Италии использовал голубей для передачи сообщений с одного корабля на другой, когда оба судна находились в движении. «С расстояния примерно в 100 км птицы находили свои голубятни на судах, находившихся в постоянном движении. Хотя суда были очень похожи друг на друга, голуби всегда находили свое»[95]. Вот эти факты вызывают настоящее удивление, и остается лишь сожалеть, что более подробную информацию о них найти не удалось.
Ил. 3. Передвижные голубятни, использовавшиеся во время Первой мировой войны (Осмен и Осмен, 1976):
1 — механизированная передвижная голубятня;
2 — трофейная немецкая голубятня, выставленная в Лондонском зоопарке;
3 — передвижная голубятня во Франции (использован камуфляж)
ЭКСПЕРИМЕНТ С ПЕРЕДВИЖНЫМИ ГОЛУБЯТНЯМИ
Для эксперимента, который я предлагаю провести, требуется передвижная голубятня, смонтированная в кузове обычного деревенского грузовика. Птиц в голубятне предварительно следует обучить возвращаться домой обычным образом, так же, как любых других голубей. Затем их обучают находить передвижную голубятню. Основной этап обучения состоит в том, чтобы забрать нескольких особей из передвижной голубятни и поместить в корзины для перевозки птиц. Затем передвижная голубятня транспортируется в другое место, причем часть птиц — включая брачных партнеров и потомков тех голубей, которых изъяли из передвижной голубятни, — остается в ней. После этого птицы, помещенные в корзины, выпускаются на волю в том месте, где прежде находилась голубятня. Птицы тут же видят, что дом исчез. Смогут ли они его найти?
Если голуби будут постоянно находить передвижную голубятню, причем делать это быстро, на большом расстоянии, независимо от направления, в котором она удаляется, и к тому же при попутном ветре, мешающем использовать обоняние, это будет означать, что между голубями и их домом существует прямая связь. Если же голуби так и не смогут найти передвижную голубятню даже в том случае, когда в ней остается часть птиц, результат, к сожалению, будет неопределенным. С одной стороны, он может означать, что между голубями и их домом не существует невидимых связей. С другой стороны, тот же результат может означать, что связь с домом существует, но перемещения одной только голубятни недостаточно. Возможно, голубятню следует перемещать вместе с окружающей ее средой, что вполне осуществимо, — например, если установить голубятню на судне.
В связи с этим уместно привести сообщение, которое я получил от моего голландского корреспондента, г-на Эгберта Гискеса, владельца передвижной голубятни на Рейне:
«Один голландский шкипер, владелец речной баржи, перевозил на своем судне в Германию и Швейцарию различные товары, доставляемые морскими судами в Роттердам. Его голуби каждый день летали вокруг баржи, пока он двигался вверх или вниз по реке. Как-то раз он передал своему товарищу в Роттердаме корзину с тремя голубями и попросил: "Выпусти их на волю через пять дней, посмотри, что они будут делать, и сразу напиши мне". Через полсуток голуби добрались до своей голубятни в Базеле, миновав массу других судов».
Эта история не так удивительна, как использование голубятен на морских судах итальянским ВМФ, потому что голуби шкипера хорошо знали Рейн и могли просто лететь вверх по течению реки до тех пор, пока не добрались до своей баржи. Но описанный факт подсказывает идею несложного эксперимента, осуществимого при содействии этого или любого другого шкипера, который плавает по Рейну и держит на судне голубятню. Вместо того чтобы выпускать птиц в Роттердаме, в устье Рейна, откуда возможно только одно направление полета — вверх по течению реки, голубей лучше выпускать примерно в середине Рейна — допустим, в Кобленце (Германия). Ни голуби, ни тот, кто их выпускает, не должны знать, в каком направлении в данный момент плывет судно с голубятней — в Базель, вверх по течению, или в Роттердам, вниз по течению Рейна. Если окажется, что в серии экспериментов голуби неизменно летят в правильном направлении и сразу находят судно со своей голубятней, а не мечутся вверх и вниз по течению реки, выбирая направление полета случайным образом, результаты могли бы указывать на существование невидимой связи между голубями и их передвижным домом.
Если нет знакомого капитана или судовладельца, готового участвовать в исследованиях, проще начать опыты на земле, воспользовавшись обычной передвижной голубятней. На первой стадии исследования необходимо обучить птиц возвращаться домой, когда мобильная голубятня перемещается на небольшие расстояния. Голуби, как и люди, обычно не предвидят, что их дом может куда-то переехать. Возможно, что вначале птицы проявят растерянность — точно так же, как растерялись бы люди, в один прекрасный день не обнаружившие собственного дома. Даже увидев похожее здание на некотором расстоянии, люди едва ли тут же направятся к нему как ни в чем не бывало. Но если однажды подойти к удалившемуся зданию и узнать в нем свой дом, в дальнейшем изменения его местоположения должны восприниматься спокойнее. Именно так происходит с голубями.
КАК ОБУЧИТЬ ГОЛУБЕЙ ВОЗВРАЩАТЬСЯ В ПЕРЕДВИЖНУЮ ГОЛУБЯТНЮ
Обучая голубей возвращаться домой в передвижную голубятню в Ирландии и Англии, я убедился, что птицы быстро привыкают к тому, что их дом перемещается.
Возможность приступить к работе с передвижной голубятней впервые появилась у меня в 1973 г., когда маркиз и маркиза Дафферин, а также Эйва любезно предложили мне воспользоваться их имением (Кландебой, графство Даун, Северная Ирландия). В проведении исследования мне помогали посредник Дональд Хой и главный егерь Боб Гарвен, который постоянно присматривал за птицами.
Мы приобрели стандартную деревянную голубятню на два отделения и установили ее на прицепе таким образом, чтобы ее можно было перевозить по окрестностям с помощью трактора или «лендровера». Летом мы поместили в голубятню двенадцать взрослых птиц и обучили их возвращаться домой обычным способом. К несчастью, почти все они пропали— потерялись, были застрелены охотниками или убиты ястребами-перепелятниками. Но затем мы получили еще десять голубей, на этот раз молодых, и держали их в другом отделении голубятни.
У нас не было возможности начать эксперименты до самого ноября, когда голуби уже перестают размножаться и привязанность к дому у них ослабевает. К тому времени у нас оставалось только три голубя из первой партии и пять голубей из новой. Это были далеко не лучшие условия для начала эксперимента, но, так как после Нового года мне предстояло уехать в Индию, мы решили приступить к обучению старших птиц и посмотреть, что из этого выйдет.
На первой стадии экспериментов мы переместили передвижную голубятню всего на 150 ярдов, оставив на той же самой лужайке. Сначала все птицы содержались в голубятне, а через два дня три старшие особи были выпущены на волю. В течение получаса голуби кружили над тем местом, где голубятня стояла прежде, а потом стали приближаться к новому месту. Еще через полчаса они сели на крышу голубятни, но вскоре вновь взлетели в небо. В конце концов через полтора часа после того, как птиц выпустили на волю, две из них влетели внутрь голубятни и были накормлены. Последняя птица оказалась более робкой и провела ночь на соседнем дереве, но утром и она вернулась в голубятню.
На следующий день мы передвинули голубятню на новое место, еще на 50 ярдов дальше от ее первоначального расположения, но в пределах все той же лужайки, а потом вновь выпустили старших голубей. Они покружили над прежним местом стоянки, но вскоре уселись на голубятню, через 15 минут влетели внутрь и были накормлены. Еще через день мы переместили голубятню на другую лужайку, которая находилась в 300 ярдах от предыдущего места стоянки, и выпустили на волю тех же самых голубей. На этот раз они кружились над прежним местом очень недолго и уже через 10 минут влетели в голубятню, установленную на новом месте. Стало совершенно ясно: голуби начинают привыкать к тому, что их дом может перемещаться.
Приучив голубей находить передвижную голубятню за столь короткий срок, мы решили приступить непосредственно к эксперименту. Однажды утром мы поместили взрослых голубей в хорошо вентилируемый ящик.
Голубятню, в которой оставались пять молодых особей, мы перевезли на поле около Даунпатрика, на 20 миль к югу от прежнего места стоянки. Испытуемые голуби были выпущены из ящика в том месте, где раньше стоял их дом.
Я следил за поведением птиц с огромным интересом. Они поочередно кружились над каждым из четырех мест, где раньше стояла голубятня, опускались там на землю, затем садились на соседние деревья, несколько раз куда-то улетали минут на десять, но потом вновь возвращались. После нескольких часов безуспешных поисков голуби стали летать вокруг меня, усаживались мне на ноги, трогательно щипали клювами траву. Без сомнения, они были голодны. Всю ночь голуби провели на дереве, а на следующее утро остались на том же месте, где раньше стояла голубятня. Они опять принялись летать вокруг меня, это продолжалось весь день, а ночь они вновь провели на дереве. На следующее утро я сдался. Мы отправились перевозить голубятню на прежнее место, а когда вернулись, обнаружили, что голуби сидят именно там, где мы собирались поставить их передвижной дом. Уже через несколько минут все птицы вошли внутрь и были накормлены досыта.
Совершенно очевидно, что этот предварительный эксперимент не выявил у наших голубей никаких сверхъестественных навигационных способностей. Я был не слишком разочарован. В ходе первого эксперимента мотивация к возвращению домой была слишком слаба, период обучения оказался очень кратковременным, а пять молодых голубей не были в родстве с испытуемыми птицами, да и содержались в голубятне отдельно от взрослых особей.
Я планировал провести еще один эксперимент в период размножения, когда мотивация к возвращению домой особенно сильна. К сожалению, эти планы не осуществились. Я приехал в отпуск из Индии примерно на полтора года позже, чем собирался, и за это время местные ястребы-перепелятники сильно сократили количество голубей. В нашем распоряжении остались только две птицы, и от эксперимента пришлось отказаться.
Следующая возможность провести эксперимент с передвижной голубятней появилась у меня только в 1986 г. Я весьма признателен Дэвиду Харту, в чьем имении Колдэм-Холл в Суффолке (Англия) содержалась голубятня. За птицами ухаживал Робби Робсон, президент местной ассоциации спортивных голубей, страстный поклонник голубиного спорта с многолетним опытом. Я глубоко благодарен ему за безвозмездно оказанную помощь.
Так же как и в Кланедбое, передвижная голубятня представляла собой помещение с двумя отделениями, собранное из имеющегося в продаже набора деталей и установленное на прицепе (ил. 4). Для того чтобы голубятню было легче разглядеть с высоты, мы нанесли на крышу широкие желтые полосы. Затраты на оборудование составили менее 400 фунтов стерлингов. Голубятню мы заполнили молодыми птицами, которых любезно предоставили нам местные любители голубей.
Для начала мы поставили голубятню на большом конном дворе позади Колдэм-Холла. Птицы привыкли к окружающей среде, научились возвращаться домой с расстояния около 50 миль и размножились в новой голубятне. На начальной стадии эксперимента в июле 1987 г., когда мы впервые переместили голубятню, мы отобрали восемь взрослых птиц и держали их в плетеных корзинах для перевозки голубей все время, пока возили голубятню по двору. В голубятне были оставлены шесть оперившихся птенцов и несколько совсем маленьких. В этом и во всех последующих экспериментах взрослых птиц выпускали точно в том месте, где до этого располагалась их голубятня.
Как и в Ирландии, птицы сперва совершенно растерялись, когда вдруг не нашли своего дома на привычном месте, — несмотря на то что голубятня располагалась всего в 100 ярдах от него и в зоне прямой видимости. Птицы кружились над местом, где раньше находился их дом, время от времени садились там на землю. Но спустя четверть часа один из голубей, неспаренный самец, пролетел над голубятней, установленной в новом месте. Спустя еще четверть часа этот самец проделал то же самое, но на сей раз его примеру последовали и остальные птицы. В следующие полчаса все птицы по нескольку раз пролетали над голубятней, словно отрабатывая траекторию полета, а потом первый самец ненадолго приземлился на крышу своего дома. Спустя еще десять минут (то есть через 80 минут после вылета из корзины) решительный самец влетел внутрь голубятни и был накормлен. Еще через 10 минут он вылетел из нее и присоединился к остальным птицам, которые кружили над голубятней и время от времени садились на землю. Для того чтобы в голубятню влетели еще пять птиц, потребовалось четыре с половиной часа (всего шесть часов после вылета из клетки). Две последние птицы в тот день так и не вернулись в голубятню и провели ночь на соседнем дубе.
На следующий день в полдень мы передвинули голубятню еще на 100 ярдов, пересадив в клетку всех взрослых птиц, кроме одной. В течение двух минут после вылета из клетки голуби стали кружиться над голубятней, и через час с четвертью все птицы уже были внутри.
Ил. Автор и Робби Робсон (справа) в ожидании голубей около передвижной голубятни
Все лето 1987 г. мы продолжали обучение птиц, несколько раз передвигая голубятню на новое место, а весной 1988 г. возобновили эксперимент. Мы обнаружили, что, когда голубятня перемещается на новое место, простояв на предыдущем несколько недель или месяцев, и особенно в тех случаях, когда она перемещается в совершенно незнакомое место, птицы находят ее достаточно быстро, но очень неохотно садятся и входят в нее, предпочитая устраиваться на соседних деревьях. Однако после того как птицы привыкают к постоянным перемещениям голубятни, страх заметно уменьшается. К лету 1988 г. мы уже могли извлечь голубей, отбуксировать голубятню на милю или две от старого места, вернуться назад, выпустить голубей из корзины и отправиться к голубятне в полной уверенности, что застанем всех голубей сидящими на крыше в ожидании еды.
Все шло успешно до тех пор, пока мы не установили голубятню недалеко — примерно в миле — от сельского амбара. Голуби находили свою голубятню, но отказывались в нее входить и могли целую неделю дожидаться, пока мы отбуксируем голубятню от амбара обратно в поле.
Теперь, задним числом, я понимаю, что нам следовало бы сразу догадаться, насколько сильно голуби пугались амбара или, вернее, работающих там незнакомых людей и шума машин. Когда программа обучения вернулась в привычное русло, мы передвинули голубятню еще на две мили, установив ее поблизости от другого амбара на соседнем фермерском участке. Это было роковой ошибкой. Новый амбар оказался еще страшнее первого: там работало гораздо больше незнакомых людей, а машины шумели еще громче. Хотя птицы быстро находили голубятню на новом месте, они даже перестали на нее садиться и предпочли жить в окрестных полях, где было достаточно корма. Голуби начали дичать.
Мы перевезли голубятню в поля, но прежде, чем голуби вновь решились в нее вернуться, прошло три недели. Эта задержка и необходимость вновь приучать их к голубятне лишили нас возможности продолжать исследования. Летом 1989 г. мы собирались быстро провести программу обучения с учетом всех прежних ошибок, а затем поставить большой эксперимент с перемещением голубятни как минимум на 20 миль.
К сожалению, эти планы не осуществились. Зимой Робби Робсон заболел орнитозом. Здоровье больше не позволяло ему работать с голубями. Лишившись ежедневной заботы Робби, птицы окончательно одичали.
КАК НАЧАТЬ ОПЫТЫ
Я описал стадию, в которой на данный момент находятся эксперименты с передвижными голубятнями. Простор для исследований велик.
Всем, кто решится провести подобные опыты, я настоятельно советую обратиться к опытному любителю голубей. Он сможет дать совет, а при необходимости и оказать помощь — если, конечно, вы сами не располагаете достаточным опытом содержания этих птиц. Успех в работе с голубями определяется основными навыками их содержания, обучения и воспитания, умением установить хорошие взаимоотношения с вашими питомцами. В разделе «Практические советы», помещенном в конце этой книги, я привожу список журналов и организаций, имеющих какое-либо отношение к голубям. Там вы всегда сможете получить полную информацию о местных объединениях любителей голубей, оборудовании голубятен, продаже корма для голубей и другие сведения практического характера. Молодых птиц можно приобрести у местных любителей, возможно, вы даже получите их в подарок. Я на личном опыте убедился, что подавляющее большинство любителей, зная о том, что загадка навигационных способностей голубей до сих пор не разрешена, живо интересуются практическими исследованиями в этой области и с радостью оказывают любую помощь всем, кто собирается открывать новую голубятню.
После того как голубятня будет собрана и заселена голубями, а сами голуби обучены возвращаться домой обычным способом, можно будет перейти к обучению поискам передвижной голубятни. Начинать следует с небольших расстояний. Как только голуби привыкнут возвращаться в свой дом, с каждым разом можно будет отвозить голубятню все дальше и дальше. Чем больше расстояние, на которое перевозится голубятня, тем интереснее могут оказаться результаты исследования.
Разумеется, необходимо вести подробный дневник перемещения голубятни и результатов полета испытуемых птиц. В дневнике обязательно нужно указывать погодные условия в день эксперимента, направление ветра, точное время вылета голубей из клетки, а также время, когда они впервые оказались вблизи передвижной голубятни.
Если голуби в самом деле способны найти свой дом, даже когда его удаляют, к примеру, на 50 миль, решающее значение будет иметь то время, которое они затратят на поиски. В случае если для этого потребуется несколько недель, появление птиц вблизи голубятни разумнее считать результатом случайного поиска, а не доказательством существования прямой связи между голубями и их домом. Если же они будут отыскивать свою голубятню в течение одного-двух часов после вылета из клетки, это значит, что голуби сразу выбирают более или менее правильное направление. Если этот факт будет отмечаться при различном местоположении голубятни и при отсутствии встречного ветра, он действительно может свидетельствовать о наличии прямой связи между птицами и домом.
Возникает и множество других вопросов. К примеру, с чем именно связан голубь — с другими птицами в голубятне или непосредственно с самой голубятней? Для того чтобы это уточнить, достаточно перевезти оставшихся голубей в одно место, а саму голубятню — в другое. В какую сторону направятся испытуемые особи — к остальным птицам или к пустой голубятне? Так откроется новая тема исследований.
ДОМАШНИЕ ЖИВОТНЫЕ, КОТОРЫЕ ОТЫСКИВАЮТ СВОИХ ХОЗЯЕВ
Если голуби действительно могут находить дорогу к дому и к своим сородичам после того, как передвижная голубятня перемещается на значительное расстояние, множество странных историй о домашних животных предстает в совершенно ином свете. Как уже упоминалось, известно немало случаев, когда животные находили дорогу к дому. Но не меньше рассказывается и о том, как оставленные дома животные находили своих уехавших хозяев. Некоторые подобные истории не забываются на протяжении столетий. Например, сообщается, что в XVI в. борзая по кличке Цезарь последовала за своим хозяином из Швейцарии в Париж и там ждала его три дня, пока сам он не приехал в карете. Каким-то образом эта собака все-таки отыскала своего хозяина при дворе короля Генриха III. Известен еще один пример поистине героической собачьей преданности. Рассказывали, что во время Первой мировой войны британская собака по кличке Принц каким-то образом умудрилась переправиться через Ла-Манш и нашла своего хозяина в окопах на передовой во Франции[96].
Большинство современных историй такого рода получают широкую известность благодаря сообщениям в местных газетах. Например, некая семья переезжала из Калифорнии в новый дом, расположенный в Оклахоме. Персидский кот по кличке Сахар выпрыгнул из окна автомобиля, несколько дней прожил у соседей, а затем исчез. Через год он появился в новом доме, преодолев долгий путь в 1000 миль по абсолютно незнакомой территории[97]. В семье Дуленов, в г. Орора (Иллинойс), жила дворняжка по кличке Тони. Когда семья переехала на 200 миль от Ороры к северо-востоку, в Ист-Лэнсинг, что у южной оконечности озера Мичиган, собаку оставили на прежнем месте жительства. Дальше произошло следующее:
«Уезжая из Ороры, Дулены оставили Тони на прежнем месте жительства, но через шесть недель пес объявился в Лэнсинге. Встретив на улице г-на Дулена, Тони радостно приветствовал его, и тот узнал собаку. То, что пес действительно был Тони, подтверждалось ошейником, который господин Дулен купил в Ороре и подрезал специально по мерке своего питомца. В ремешке ошейника была проделана дополнительная дырочка. И семья Дуленов (четыре человека), и та семья в г. Орора, в которой Дулены взяли Тони еще щенком, узнали собаку. К тому же поведение пса ясно доказывало, что он именно Тони»[98].
Существует даже рассказ о том, как ручной голубь нашел своего хозяина, двенадцатилетнего сына шерифа, в Саммерсвилле (Западная Виргиния). Однажды на заднем дворе дома появился спортивный голубь под номером 167. Мальчик стал кормить птицу и ухаживать за ней. В результате голубь стал совершенно ручным.
«Спустя некоторое время мальчика отвезли на операцию в клинику Майерса в г. Филлипи, в 70 милях по прямой от дома, а голубь остался в Саммерсвилле. Примерно через неделю, ночью, когда на улице бушевала пурга, мальчик вдруг услышал, как в окно его палаты бьется птица. Позвав сиделку, он попросил ее открыть окно и впустить голубя. Сиделка приняла это за шутку, но просьбу исполнила. В палату действительно влетел голубь. Мальчик узнал своего питомца и попросил сиделку поискать на лапке его номер – 167. Сиделка убедилась, что мальчик был прав»[99].
Подобные истории, естественно, вызывают боль естественно, вызывают большой интерес и нередко появляются на страницах газет и популярных журналов. Скептики неизменно объявляют их вымыслом и игнорируют точно так же, как прежде игнорировали все рассказы о возвращении животных домой. Но в наши дни экспериментальные исследования подтвердили, что многие виды животных действительно обладают врожденной способностью находить дорогу к дому, хотя эта способность до сих пор необъяснима. Если будет экспериментально доказано, что голуби могут находить дорогу к дому даже в том случае, когда перемещается сама голубятня, истории о домашних животных, способных находить своих хозяев, будут восприниматься гораздо серьезнее.
С точки зрения биологии природное назначение этой способности – поиск сородичей животными, отбившимися от стада или стаи. Уместно привести некоторые наблюдения за поведением волков, описанные натуралистом Уильямом Лонгом:
«В зимнее время, когда волки, как правило, живут небольшими стаями, возникает впечатление, что одинокий или отделенный от стаи волк всегда точно знает, где охотятся, бродят по лесу или отдыхают в своем дневном логове самцы его стаи. Стая состоит из родственников – более молодых или более взрослых, причем все волки в стае происходят от одной волчицы. Либо между ними существует какая-то связь, нечто вроде взаимного притяжения, либо речь идет о какой-то особой системе общения, но волк может направиться прямо к сородичам в любое время дня и ночи, даже если он неделями с ними не встречался. Стая в это время может рыскать за много миль от того места, где находится волк»[100].
Долгое время наблюдая поведение волков, Лонг пришел к выводу, что эту способность нельзя объяснить тем, что волки ходят привычными тропами, что они оставляют особые пахучие метки либо слышат вой или какие-то другие звуки. Например, однажды Лонг видел раненого волка, который отделился от стаи, залег в своем логове и отлеживался там в течение нескольких дней, а остальные волки из стаи разбежались в разные стороны. Пока волки охотились, Лонг шел за стаей по следам на снегу и был почти рядом, когда они загрызли оленя.
«Они преследовали добычу, убили ее и поедали в молчании, как это им свойственно, — волки не воют на охоте. Раненый волк в это время находился очень далеко, между ним и его стаей простирались мили непроходимых лесов на холмах и в долинах... Когда я повернулся к оленю, чтобы понять, как именно волки загнали его и убили, я заметил свежий след одинокого волка, идущий под прямым углом к направлению движения стаи. Это опять был тот же самый хромой волк... Я прошел по его следам и дошел до самого логова. Оказалось, что волк двигался почти по прямой, как будто точно знал, где находится добыча стаи. Он пришел с востока. В тот день дул слабый южный ветер, поэтому невозможно предположить, что он почуял запах мяса. При этом волк находился от места охоты настолько далеко, что в принципе не мог уловить запаха. Следы на снегу были такими же отчетливыми, как и любые другие. По следам можно было сделать вывод, что охотившиеся волки испускали какие-то беззвучные сигналы, сообщая, что нашли пищу, или же раненый волк находился в постоянном и тесном контакте с охотниками из своей стаи, благодаря чему мог не только определять, где они находятся, но и точно знать, что именно они делают в тот или иной момент»[101].
Такие связи могут быть вполне нормальным явлением в сообществах различных животных, даже если мы не понимаем, как именно они функционируют. В следующей главе я рассмотрю совершенно другой пример — колонию термитов, в которой каждое насекомое, по-видимому, знает, где находятся и что делают в тот или иной момент другие термиты. Объяснение необычных явлений из жизни термитов, возможно, лежит за пределами нынешних научных представлений — точно так же, как и в случаях с волками, с домашними животными, определяющими момент возвращения хозяина, со способностью голубей и других животных находить дорогу к дому и с миграцией птиц.
СООБЩЕСТВО ТЕРМИТОВ
ТЕРМИНЫ-ОРАКУЛЫ
Насекомые, живущие единой общиной, — муравьи, осы, пчелы и термиты — всегда вызывали у людей удивление. Это нашло отражение в многочисленных мифах, легендах и преданиях. В Европе особенно таинственным казалось поведение пчел, которых воспринимали как символ смерти и возрождения. По пчелам даже гадали, пытаясь по их поведению определить будущее. Неудивительно, что одним из самых древних изображений богини, найденным в Европе, оказалась царица улья:
«Пчелиная матка, которой пчелы служат всю свою недолгую жизнь, в эпоху неолита была воплощением самой богини. (...) Спустя 4000 лет на Крите, в период минойской культуры, в захоронения помещали золотые печати, на которых изображались танцующая богиня и ее жрицы, одетые пчелами. Улей был чревом богини и, вероятно, символизировал также подземный мир: в более поздней микенской культуре появляются гробницы в форме ульев. К жужжанию пчелы прислушивались как к голосу богини, звуку творения. (...) В древнегреческом гимне Гермесу (VIII в. до н.э.) бог Аполлон говорит посредством трех пророчиц, изображаемых в виде трех пчел и, подобно самому Аполлону, наделенных даром предвидения»[102].
В отличие от пчел, осы и шершни не были источником мифологического вдохновения для европейских народов и оценивались негативно. Прославились они только ядовитым жалом и вошедшим в поговорки злонравием.
Зато муравьи вызывали огромный интерес. В древнегреческой мифологии они были символом богини Деметры. Кельтские племена считали муравьев «волшебным народом» на последнем этапе его существования. По муравейникам гадали и предсказывали погоду. В старинных сказках и притчах — таких, как басни Эзопа — подчеркивается трудолюбие муравьев, их благоразумие, аккуратность, сдержанность, скромность, вежливость и невероятная способность к общению.
Большинство европейцев не слишком интересуется термитами, и, как заметил биолог Карл фон Фриш, «в Европе только биологи сожалеют о том, что эти любопытные создания живут так далеко»[103]. Во многих тропических регионах термиты играют чрезвычайно разрушительную роль: из-за них внезапно рушатся и обращаются в пыль целые дома и другие деревянные сооружения, так как термиты изгрызают дерево изнутри. Но воспринимают термитов не просто как обыкновенных вредителей: они внушают благоговейный страх.
У суданского племени догонов первозданный термитник играет центральную роль в мифической истории мироздания, повествующей о том, как бог Амма создал тело Земли из комка глины: «Тело, лежавшее лицом вверх в направлении с севера на юг, было женским телом. Его вагиной был муравейник, а клитором — термитник. Амма, страдая от одиночества и возжелав совокупиться с этим созданием, приблизился. Так впервые был нарушен порядок вещей во Вселенной. (...) От близости с богом термитный холм стал расти, загораживая проход и обнаруживая свою мужскую сущность. Он уподобился фаллосу какого-то неведомого существа, и сношение стало невозможным. Но бог оказался сильнее: он вырезал термитник и вступил в союз с землей, лишенной клитора. Этот изначальный случай предопределил ход вещей. От неполноценного союза вместо предполагаемых близнецов родилось только одно существо — шакал, символ трудностей, испытанных богом»[104].
Во многих областях Африки и Австралии принято считать, что термиты обладают особой чувствительностью и в особенности даром определять расстояние. Термитов часто используют при гадании. Например, так поступает племя азанде в Западной Африке:
«Такое предсказание считается весьма достоверным. Туземцы племени азанде говорят, что термиты не прислушиваются ко всему, что говорится за пределами поселений, а слышат только те вопросы, которые обращены непосредственно к ним. Чаще всего обращаются за советом к термитам, которые называются акедо или ангбатимонго, и реже — к тем, которые называются абио, так как последние, по мнению туземцев, часто обманывают»[105].
В эксперименте, который я собираюсь описать в этой главе, термиты тоже должны выступить в роли оракулов, но обращенный к ним вопрос будет относиться к ним самим. Никто не знает, как термиты взаимодействуют внутри колоний. Удивительная организованность термитов заставляет предположить, что внутри сообщества непременно должна существовать сложная система передачи информации. Как действует эта система — посредством передачи запахов или каких-то других чувственных сигналов или же внутри сообщества действует некое поле, природа которого еще не известна науке?
Перед тем как перейти к практической стороне вопроса и описать условия соответствующего эксперимента, необходимо рассмотреть биологические аспекты проблемы и существующие на сегодняшний день гипотезы по поводу того, как организованы сообщества различных насекомых.
БИОЛОГИЧЕСКИЕ АСПЕКТЫ ПРОБЛЕМЫ
Термитов часто называют белыми муравьями, но этот термин может ввести в заблуждение. В действительности термиты ведут свою родословную от тараканов, которые, в свою очередь, появились на Земле свыше 200 миллионов лет назад, задолго до других общественных насекомых, таких, как пчелы, осы и муравьи[106]. Основная пища термитов — целлюлоза, которую они переваривают с помощью симбиотических микроорганизмов и грибков. Более примитивные виды питаются непосредственно древесиной тех деревьев, в которых они обитают. Более развитые виды устраивают гнезда в земле и питаются гнилой древесиной, травой, семенами и другими источниками целлюлозы. Термиты большинства видов имеют белую окраску и мягкий панцирь, боятся света и живут в темноте, внутри разлагающейся древесины, в гнездах и в туннелях. За исключением крылатых особей, способных к размножению, все они слепы.
Подобно муравьям, сообщество термитов строго разделено на касты, которые включают в себя солдат, специализирующихся на защите всей колонии, и разнообразных рабочих. В отличие от муравьев, пчел и ос, в сообществах которых доминирующую роль играет самка, сообщество термитов построено на партнерских отношениях. И рабочие особи, и солдаты могут быть как мужского, так и женского пола. Рядом с царицей термитов находится царь, и доминирующая пара может прожить в центре колонии несколько лет.
Один или два раза в год появляются молодые особи, способные к размножению. Подобно крылатым муравьям, они роятся в огромных количествах. Эти особи — излюбленное лакомство для многих животных и даже для людей. Обычно их едят живыми, отделив крылья, но местные жители утверждают, что термиты особенно вкусны в жареном виде.
После брачного полета выжившие особи теряют свои крылья и образуют пары, из которых только небольшая часть достигает своей конечной цели — строит укромное убежище, которое в будущем станет центром новой колонии. Только после этого пара термитов вступает в фазу половой зрелости и начинает брачные отношения, которые продолжаются всю жизнь. Сначала пара заботится о потомстве, а в дальнейшем ее потомство начинает заботиться о родителях, после чего у царя и царицы остается единственная задача — воспроизводство новых особей.
Личинки муравьев, пчел и ос вылупляются из яиц совершенно беспомощными. Пока не произойдет окукливание и превращение в активную особь, личинки не могут участвовать в жизни колонии. Развитие термитов протекает совсем по-иному: подобно тараканам и кузнечикам, они не проходят стадию куколки, а постепенно растут от линьки к линьке, с самого начала будучи подобны взрослой особи. Активный образ жизни термиты начинают вести уже со стадии личинки.
Гнезда более «примитивных» видов термитов хорошо замаскированы и состоят из системы переходов и полостей в древесине или почве, расположенных, по-видимому, случайным образом. Царица может быть относительно небольшой по размерам; она может свободно передвигаться внутри термитника. У более развитых видов гнезда строятся намного аккуратнее и порой достигают гигантских размеров — до 20 футов в высоту (ил. 5). Царица обитает в ограниченном пространстве — царской камере, выделяется крупными размерами и откладывает огромное количество яиц. Например, у термитов африканского вида Macrotermes bellicosus царица может достигать в длину более 5 дюймов, откладывать ежедневно 30 тысяч яиц и жить долгие годы. Колонии термитов могут насчитывать несколько миллионов насекомых и существовать на протяжении столетий. После смерти царя и царицы их заменяет новая пара[107].
Ил. 5. Гнездо африканских термитов вида Belliocosotermes natalensis. Высота гнезда — более восьми футов. Вокруг центральной зоны, где располагаются камера царской пары и грибные сады, имеется сложная система отверстий, служащих для вентиляции и охлаждения гнезда (Дрешер, 1964; Нуаро, 1970): 1 — наружная стенка; 2 — грибной сад; 3 — восходящая труба; 4 — царская камера
Камеры термитников могут уходить глубоко под землю и иметь целую сеть подземных переходов и наземных труб, которые выходят наружу в прилегающем районе, где рабочие собирают пищу. Некоторые виды пустынных термитов прорывают в поисках воды подземные туннели на глубину до 100 футов. В гнездах многих видов термитов толстая и твердая наружная стенка купола имеет отверстия и вентиляционные каналы. Само гнездо находится в воздушном пространстве и содержит царскую камеру и множество других камер, переходов и грибных садов, в которых на перемолотой в муку древесине термиты выращивают грибы.
Рабочие особи возводят эти сооружения из кусочков почвы, сначала смешанной с экскрементами или слюной, а затем высушенной до твердого состояния. Каким образом рабочие узнают, куда именно укладывать строительный материал?
«Гнездо строится, но невозможно понять, каким образом каждый из членов колонии может увидеть нечто большее, чем собственный участок работы, в полном объеме представить себе план такого совершенного строения. Некоторые гнезда строятся многими поколениями рабочих, и каждое новое поколение должно каким-то образом получать информацию о том, что было сделано предыдущими. Существование подобных гнезд неизбежно наводит на мысль, что все работы ведутся в строгом порядке и по заранее намеченному плану. Но каким образом рабочие в течение длительного времени могут столь эффективно обмениваться информацией? И кто составляет и хранит план гнезда?»[108]
Вопрос, который в той или иной мере касается всех сообществ животных, в связи с термитами встает наиболее остро. Каким образом координируется деятельность отдельных особей и сообщество функционирует как единое целое? Оказывается, что целое здесь — нечто большее, чем сумма его отдельных частей, но что именно делает эту сумму единой системой?
ПРИРОДА СООБЩЕСТВА НАСЕКОМЫХ: ПРОГРАММЫ И ПОЛЯ
В биологии сообщества насекомых традиционно рассматриваются как единый организм или даже как некий суперорганизм. Эдвард О. Уилсон, исследовавший поведение общественных насекомых, а впоследствии ставший одним из основателей социобиологии, описал упадок концепции суперорганизма следующим образом:
«Почти сорок лет, с 1911 по 1950 гг., эта концепция доминировала в научной литературе об общественных насекомых. Затем — именно тогда, когда идея, казалось бы, достигла пика своего развития — интерес к ней стал ослабевать, и в наши дни о ней упоминают лишь изредка. Упадок этой концепции служит примером того, как вдохновенные глобальные идеи в биологии нередко перерастают в экспериментальные редукционистские изыскания, вытесняющие саму идею. Что касается нынешнего поколения, столь приверженного редукционистской философии, то концепция суперорганизма дала ему очень привлекательный мираж, заставляющий нас все время двигаться к некой точке на горизонте. Как только мы к ней приближаемся, мираж рассеивается и оставляет нас в совершенно неизвестной области, для исследования которой потребуется все наше внимание... Среди экспериментаторов бытует твердое убеждение, вытекающее из общего редукционистского характера биологии и сводящееся к тому, что со временем результаты всех разрозненных исследований каким-то образом сложатся в целостную картину»[109].
Но Уилсон честно признает, что «задача моделирования конструкции сложных гнезд на основе информации о суммарном поведении отдельных насекомых до сих пор так и не решена и представляет собой проблему как для биологов, так и для математиков»[110].
Постоянные неудачи редукционистского подхода в последнее время привели к возрождению концепции суперорганизма[111]. Анализа поведения отдельных насекомых оказалось недостаточно: стало ясно, что его необходимо учитывать в сочетании с глобальными свойствами всей колонии. Каким же образом можно исследовать эти свойства?
В настоящее время самым популярным методом стали попытки смоделировать глобальные свойства колонии с помощью компьютера — по аналогии с теми исследованиями, в которых моделируется деятельность головного мозга. В этом случае на основе взаимодействия отдельных насекомых предпринимается попытка воссоздать глобальные свойства всей колонии точно так же, как на основе взаимодействия отдельных нервных клеток моделируются глобальные свойства всего головного мозга[112]. Современные виртуальные модели сообщества различных насекомых выполнены по образцу виртуальных моделей головного мозга, при построении которых используются методы «нервных сетей», «моделей параллельного распределения» и «клеточных автоматов»[113]. Отдельные виртуальные насекомые программируются с определенным набором реакций, а затем всем им дается команда взаимодействовать с ближайшими соседями в соответствии с программой более высокого уровня — как и ведут себя общественные насекомые внутри колонии:
«Поведенческие процессы, как и деятельность нервной системы, могут до некоторой степени определяться типом связи между минимальными элементами системы (отдельными муравьями или отдельными нервными клетками). Частный тип общественного поведения можно рассматривать как результат взаимодействия каждых двух соседних насекомых. (...) К примеру, в сообществах муравьев свойствами общественного поведения являются строительство муравейника, создание тропы или поведение муравьев-фуражиров»[114].
Компьютерное моделирование в своем роде весьма интересно, но оно не может ответить на большинство фундаментальных вопросов. Какие реалии физического мира соответствуют общим программам виртуальной модели, координирующим и запоминающим деятельность каждого отдельного «насекомого»? Компьютерные модели — это имитация разумного поведения, созданная людьми, преследующими определенную цель. Все программы, на основе которых создаются виртуальные модели колонии насекомых, играют ту же роль, что «душа колонии» или «коллективный разум», гипотезы о которых выдвигались виталистами еще много лет назад, но затем были отвергнуты сторонниками механистической теории как «мистические». Виртуальные модели не могут объяснить, каким образом деятельность более высокого уровня, предполагающая наличие разума, может быть следствием механистического взаимодействия нервных клеток или отдельных насекомых. Наличие программ высокого уровня предполагается изначально.
Кроме того, компьютерные модели упускают из виду физические процессы, на основе которых функционирует система передачи информации внутри колонии. На сегодняшний день при построении всех моделей предполагается, что взаимодействие между насекомыми внутри колонии осуществляется только с помощью известных органов чувств, за счет реакции на физические прикосновения и определенный запах, а это допущение может оказаться ошибочным.
Наиболее многообещающей мне представляется гипотеза о том, что глобальная организация колонии термитов объясняется наличием особого поля. Поведение каждого отдельного насекомого координируется социальными полями, в которых содержится план строительства колонии. Точно так же, как под действием магнитного поля вокруг магнита выстраиваются железные опилки, под действием поля колонии из отдельных насекомых может складываться колония термитов. Пытаться создать модель колонии общественных насекомых без учета таких полей — примерно то же самое, что объяснять поведение железных опилок без упоминания магнитного поля, предполагая, что опилки перемещаются под воздействием неких программ, заложенных в память каждой отдельной частички железа.
Термин «поле» ввел в научный обиход в 40-х гг. XIX в. Майкл Фарадей, выдающийся английский физик, изучавший электричество и магнетизм. Ключевая идея Фарадея состояла в том, что внимание следует сосредоточить на пространстве вокруг источника энергии, а не на самом источнике. В XIX в. концепция существования поля полностью подтвердилась при исследовании электромагнитных явлений и света. В 20-е гг. XX в. Эйнштейн расширил понятие поля, в своей общей теории относительности включив в него гравитацию. По Эйнштейну, вся Вселенная находится внутри универсального гравитационного поля, которое искривляется вблизи материальных объектов. Более того, в ходе успешного развития квантовой физики понятие поля стали использовать при описании всех атомных и субатомных структур. «Частица» каждого типа теперь рассматривается как квант энергии колебаний в соответствующем поле: электроны — это колебания в электронных полях, протоны — в протонных полях, и т.д. Поля — к примеру, электромагнитное или гравитационное — по своей природе отличаются друг от друга, но их объединяет общее свойство поля как области влияния с соответствующими пространственными характеристиками.
Поля по определению неделимы. Их нельзя расчленить на отдельные объекты или рассматривать как совокупность составляющих всей структуры. Современная физика склоняется к мнению, что сами элементарные частицы — производные полей. Физики уже свыклись с расширенной трактовкой концепции поля, но в биологию эти революционные идеи проникают медленно. Начало было положено в 20-е гг. XX в., когда несколько эмбриологов и специалистов по биологии развития выдвинули гипотезу морфогенетических полей, помогающую объяснить развитие растений и животных. Морфогенетические поля мыслились как невидимые схемы или планы, в соответствии с которыми происходит развитие организмов[115].
Концепция морфогенетических полей в наше время широко применяется специалистами по биологии развития. К примеру, она предлагает убедительное объяснение тому факту, что наши руки и ноги имеют различную форму, хотя состоят из одних и тех же генов и белков. Различие объясняется тем, что руки развивались под влиянием морфогенетических полей рук, а ноги — под влиянием полей ног. Подобно планам архитектурных сооружений, морфогенетические поля играют формообразующую роль. По разным планам из одних и тех же строительных материалов можно построить здания самой различной формы. Сам план не является материальной составляющей здания, но определяет способ, которым будут соединяться все строительные материалы, а также форму, которую будет иметь готовое сооружение. Морфогенетические поля нельзя свести ни к материальным компонентам организма, ни к их взаимодействию, — точно так же, как форма здания не является следствием взаимодействия между строительными материалами. Компоненты целого взаимодействуют друг с другом именно потому, что соединяются в соответствии с конкретным планом здания, существовавшим еще до того, как было построено само здание.
Проблема заключается в том, что природа морфогенетических полей и принципы их функционирования никому не известны. Большинство биологов предполагают, что рано или поздно их удастся объяснить в категориях традиционных физики и химии. Но с моей точки зрения, мы имеем дело с полями нового типа, которые я предложил обозначить термином морфические поля. Моя гипотеза о причинности формообразования предполагает, что этими полями определяются глобальные самоорганизующие свойства систем на всех уровнях сложности — от молекул до сообществ. Морфические поля не являются фиксированными: они постоянно развиваются и обладают своего рода встроенной памятью. Эта память определяется процессом морфического резонанса, то есть взаимовлиянием подобных объектов в пространстве и времени[116].
Цель описанных ниже экспериментов состоит не в том, чтобы проверить мою версию теории биологического поля, а в том, чтобы испытать, насколько удачен сам подход, основанный на понятии поля. Действительно ли некие поля, в настоящее время неизвестные физике, играют организующую роль в создании сообщества термитов? На этой стадии исследования несущественно, что это за поля — морфические, нелокальные квантовые или какие-либо другие.
ПОЛЯ ТЕРМИТНЫХ КОЛОНИЙ
Предположение о том, что колонии термитов организуются под влиянием поля, вовсе не отрицает роли передачи информации между отдельными насекомыми с помощью обычных органов чувств. Подобно муравьям, термиты могут общаться друг с другом самыми различными способами: издавая определенные звуки, определенным образом касаясь друг друга[117], взаимодействуя при раздаче пищи, испуская особые запахи, используя специфические химические сигналы, известные под названием феромонов[118]. Так, у муравьев, по-видимому, ведущую роль в сенсорной коммуникации играют именно феромоны. «В целом типичная колония муравьев использует приблизительно от 10 до 20 сигналов, большая часть которых имеет химическую природу»[119]. Из этих феромонов лучше всего изучены химические вещества, служащие сигналом тревоги (которые действуют за счет диффузии в воздушной среде, как правило, на расстоянии от двух до трех дюймов[120]), и феромоны, которыми помечаются тропы для других насекомых[121].
Однако термиты-рабочие при постройке и ремонте гнезд не просто общаются друг с другом, а имеют дело с уже построенными физическими структурами. Например, при строительстве арок в термитниках рабочие сначала возводят колонны, а затем начинают изгибать их в направлении друг к другу до тех пор, пока обе колонны не соединятся (ил. 6). Каким образом это удается? Рабочие, возводящие одну колонну, не могут видеть рабочих на другой колонне: как уже отмечалось выше, термиты-рабочие слепы. Не доказано и предположение, что термиты бегают по земле из стороны в сторону, измеряя расстояние между колоннами. Напротив, «совершенно невероятно, чтобы в условиях постоянной беготни и скученности термиты могли бы четко различать звуки с противоположной колонны за счет проводимости через ее основание»[122]. Точно так же, как у муравьев и других общественных насекомых, определенную роль может играть обоняние: термиты могут получать информацию через запах тропы, через химические вещества, сигнализирующие об опасности, а также при обмене жидкой пищей. Но обонянием едва ли можно объяснить появление общего плана гнезда или роль в этом плане каждого отдельного насекомого. Создается впечатление, что насекомые «знают», какого типа структуру следует построить, что они в своей работе следуют какому-то невидимому плану. Что касается вопроса Э.О. Уилсона о том, кто создает и хранит план гнезда, я полагаю, что этот план является составной частью организующего поля колонии. И поле это находится не внутри отдельного насекомого, а является коллективным.
Ил. 6. Термиты-рабочие вида Macrotermes natalensis возводят арку. Колонны строятся из кусочков грязи и экскрементов, которые насекомые приносят во рту. (фон Фриш, 1975)
Такое поле непременно должно охватывать всю колонию. Вероятно, оно имеет субполя для отдельных структур — тоннелей, арок, башен и грибных садов. Если подобные поля играют организующую роль, они должны обладать способностью пронизывать материальные структуры колонии, проходя сквозь стенки и камеры. Точно так же, как магнитное поле может проходить сквозь различные материалы, поле колонии должно проходить сквозь материалы, из которых построено гнездо. Благодаря этой способности проникать сквозь материальные преграды, биологическое поле могло бы управлять отдельными группами термитов даже в том случае, когда обычное сенсорное взаимодействие между ними отсутствует.
Основной вопрос исследования можно сформулировать следующим образом: сохраняется ли гармоничная согласованность между действиями термитов-рабочих при строительстве гнезда даже в том случае, когда сенсорное общение блокируется какой-либо преградой? Нам вновь поможет аналогия с магнитным полем: если расположение частичек железа по силовым линиям зависит только от частиц, находящихся в непосредственном контакте с соседними частицами, тогда картина силовых линий магнитного поля будет искажаться любой физической преградой— например, листом бумаги. В действительности же рисунок линий не меняется, так как физическая преграда проницаема для магнитного поля.
Как известно, термиты чувствительны к магнитному полю. Яркий тому пример — австралийские компасные термиты, которые ориентируют свои гнезда узкими сторонами на север и юг, чтобы свести к минимуму нагрев гнезда полуденным солнцем. Лабораторные опыты также показали, что термиты реагируют на очень слабые переменные электрические и магнитные поля[123].
Более того, эксперименты берлинского исследователя Гюнтера Беккера показали, что термиты могут оказывать друг на друга влияние посредством некоего «биополя», по природе, возможно, электрического. Из содержащейся в неволе колонии термитов вида Hete-rotermes indicola Беккер взял несколько групп, примерно по 500 рабочих и солдат, и поместил каждую в отдельный полистироловый контейнер прямоугольной формы, положив туда древесину и влажный вермикулит. Затем он поставил контейнеры в несколько рядов по четыре в каждом, а между соседними контейнерами оставил промежутки в 1 см. Через несколько дней термиты начали строить галереи в углах контейнеров, но не в каждом углу, а только в тех, которые не находились по соседству с другими контейнерами. С тех сторон, которые соседствовали с другими контейнерами, строительство практически не велось. Этот принцип соответствовал тому, что наблюдается в природных термитниках, где галереи никогда не строятся в центральной части гнезда, а только на периферийных участках, вытягиваясь наружу к потенциальным источникам пищи и воды. В типичном эксперименте общая длина галерей на внешних сторонах контейнеров составила 1899 см, а на тех сторонах, которые были обращены к другим контейнерам, — только 80 см. В других экспериментах Беккер обнаружил, что, когда отдельные контейнеры отодвигаются от остальных более чем на 10 см, строительная активность в них возрастает. Когда все контейнеры плотно сдвигались, строительство галерей прекращалось. Таким образом, группы термитов как-то влияли друг на друга, причем это влияние уменьшалось с увеличением расстояния между группами.
Ил. 7. Строительство галерей термитами вида Heterotermes indicola. Термиты содержатся в неволе в пластиковых контейнерах с нейтральным строительным материалом — вермикулитом. В каждом контейнере находится одинаковое количество насекомых. На всех сторонах, обращенных к соседним контейнерам, строительство галерей практически не ведется. Влияние передается от контейнера к контейнеру посредством поля. (Беккер, 1977)
В другом эксперименте Беккер расположил 16 контейнеров в виде квадрата 4x4, так что по 4 контейнера находилось с каждой из внешних сторон, а 4 располагались в центре. Вновь на наружных сторонах внешних контейнеров отмечалось активное строительство галерей (ил. 7), в то время как на внутренних сторонах и в контейнерах, расположенных в центре, строительство галерей практически не велось (43 см в день на внутренних сторонах при 539 см в день — на внешних). Полученные данные Беккер интерпретировал в свете гипотезы «биополя», запрещающего строительство галерей в своей центральной части.
Запрету на строительство галерей на соседних сторонах контейнеров термиты продолжали подчиняться даже после того, как между контейнерами помещали дополнительные барьеры в виде пластин из пенопласта или толстого стекла. Беккер счел, что эти препятствия полностью исключат возможность тепло- и звукопередачи, а также химических сигналов, биополе же способно проникнуть сквозь стекло и пенопласт. Но когда между контейнерами помещали тонкую алюминиевую фольгу или древесноволокнистые плиты, окрашенные содержащей серебро краской, эффект биополя полностью исчезал. Термиты начинали возводить галереи на внутренних сторонах всех внешних контейнеров и даже на всех сторонах внутренних контейнеров столь же активно, как прежде вели строительство только на внешних сторонах квадрата. Алюминиевая фольга и содержащая серебро краска экранируют действие электрического поля, и потому Беккер предположил, что это «биополе» представляет собой слабое переменное электрическое поле, которое создают сами термиты.
Но даже если допустить, что электрические и магнитные поля действительно влияют на строительную активность термитов, все равно трудно представить, что в них содержится точная информация о проекте термитника. Каким образом конкретная картина того или иного объекта может храниться в электромагнитном поле? Вероятно, на термитов должно воздействовать и какое-то другое поле, тип которого пока неизвестен.
Результаты экспериментов, проведенных южноафриканским натуралистом Эженом Маре, заставляют предположить, что такое поле действительно существует. В 20-е гг. XX в. Маре провел серию интереснейших наблюдений за тем, как термиты-рабочие вида Eutermes латали большие проломы, которые он проделывал в их термитниках. Рабочие начинали ремонт с обеих сторон дыры. Каждое насекомое приносило комочек земли, покрытый липкой слюной, и прилепляло его к стенке. Рабочие на разных сторонах пролома не могли ни вступать в контакт друг с другом, ни видеть друг друга на расстоянии (так как термиты-рабочие слепы). Тем не менее части сооружения, строившиеся с разных сторон дыры, точно сходились друг с другом. Казалось, что ремонтные работы координируются какой-то общей организующей структурой, которую Маре отождествил с групповой душой, а я предпочитаю считать морфическим полем.
«Возьмите стальную пластину, по ширине и высоте на несколько футов превышающую размеры термитника. Поместите ее в центре пролома, проделанного в стенке, и термитник таким образом разделится на две части. Одна часть колонии больше не сможет войти в контакт с другой, причем одна из частей будет отделена и от царской камеры. Рабочие, ремонтирующие стену термитника с одной стороны, ничего не знают о работах, которые ведутся в другой части термитника, но, несмотря на это, с обеих сторон термиты возводят одинаковые арки и башни. Когда вы в конце концов удалите пластину, две половины возведенного термитами сооружения точно сойдутся — останется только заделать шов между ними. Невозможно не прийти к выводу, что где-то существует заранее составленный план, который термиты лишь воплощают в жизнь. Где же находится тот дух, та душа, в которой хранится этот заранее составленный план? (...) Где каждое насекомое получает свою часть работы? Можно делать проломы на любой стороне термитника и затем аналогичным образом вставлять стальную пластину, но термиты все равно будут возводить с каждой стороны одинаковые структуры»[124].
На основании полученных Маре результатов можно предположить, что существует некое организующее поле, которое — в отличие от исследованного Беккером поля, запрещающего строительство галерей в центральной части термитника, — не экранируется металлической пластиной и потому, вероятнее всего, не является электрическим.
Маре продолжил исследования. Новые результаты указывали на то, что организующее поле тесно связано с царицей, а гибель царицы немедленно влечет за собой его полное исчезновение:
«Пока термиты ведут восстановительные работы по обе стороны стальной пластины, прокопайте ход до царской камеры, стараясь при этом как можно меньше повредить само гнездо. Извлеките царицу и убейте ее. В то же мгновение вся колония по обе стороны плиты прекратит работу. Можно на много месяцев отделять термитов от царицы стальной пластиной, но при этом работы будут постоянно вестись до тех пор, пока царица жива и находится в своей камере. Разрушьте камеру и удалите царицу из термитника — и активность насекомых немедленно прекратится»[125].
Насколько мне известно, никто и никогда не пытался повторить эксперименты Маре. Редукционистские настроения в современной биологии несовместимы с идеями Маре, а ученые полностью игнорируют его работы. Но я уверен, что его исследования открывают серьезные перспективы в изучении принципов организации различных общественных насекомых.
ВОЗМОЖНЫЕ ЭКСПЕРИМЕНТЫ
1. Прежде всего, крайне важно повторить эксперименты Маре со стальной пластиной. Действительно ли восстановительные работы, проводимые насекомыми по обе стороны плиты, координируются так, как описывает Маре?
Этот эксперимент вряд ли осуществим в регионах с холодным климатом, если только любители не попытаются создать искусственную колонию термитов. Но в тропических странах, где много природных термитников, повторить исследования Маре не составит никакого труда. Все расходы будут связаны только с подготовкой стального листа. Однако установка большого стального листа внутри термитника может представлять определенные трудности. Еще сложнее будет извлечь стальной лист, не причинив серьезного вреда термитнику, после того как насекомые заделают брешь. Маре не дает на этот счет никаких указаний, поэтому технологию придется разрабатывать самостоятельно.
В том случае если восстановительные работы, проводимые рабочими по обе стороны стальной пластины, будут координироваться именно так, как описано у Маре, появятся предпосылки для проведения дополнительных экспериментов. Дают ли барьеры иного типа такие же результаты, как стальной лист? Смогут ли термиты обмениваться звуковыми сигналами сквозь эти преграды? Как изменится деятельность насекомых по одну сторону барьера, если восстановительные работы по другую сторону будут каким-либо образом прекращены или нарушены? И так далее.
2. Действительно ли повреждения, нанесенные царице, так быстро сказываются на функционировании всей колонии термитов, как утверждает Маре? Я уже цитировал тот фрагмент, где Маре утверждает, что это происходит «немедленно». В другом месте Маре описывает, как следил за царицей очень крупной колонии термитов через отверстие в царской камере. Часть стенки отвалилась, упала на царицу и нанесла ей сильный удар. Рабочие вблизи царской камеры немедленно прекратили работу и стали бесцельно ползать вокруг отдельными группами. После этого Маре осмотрел периферийные части термитника, удаленные от царской камеры на много ярдов:
«Даже в самых дальних участках гнезда все работы прекратились. Солдаты и рабочие собирались в различных частях гнезда. Казалось, они стремятся к объединению в группы. Не приходилось сомневаться, что потрясение, испытанное царицей, передалось в самые отдаленные части термитника уже через несколько минут»[126].
Возможно, что эти тревожные известия распространялись по колонии посредством звуковых сигналов — феромонов, сообщающих об опасности, или какими-либо другими обычными способами. Но с таким же успехом они могли почти мгновенно распространиться по всей колонии и посредством организующего поля — разумеется, если такое поле действительно существует. В последнем случае сигнал будет передаваться и тогда, когда будут установлены барьеры, блокирующие возможность обмена звуками и запахами между отдельными насекомыми.
Вместо того чтобы убивать царицу или наносить ей увечье, эксперимент можно повторить, просто удалив царицу из царской камеры или усыпив ее и находящихся вокруг насекомых. Необходимо точно определить, когда сигнал об этом событии дойдет до удаленных частей термитника. После этого можно было бы рассчитать скорость передачи сигналов. Если сигнал будет передаваться почти мгновенно, можно исключить воздействие феромонов, но возможность передачи сигналов с помощью звука останется. Исключить возможность передачи информации с помощью звуковых сигналов будет весьма сложно, так как звук способен проходить сквозь барьеры и огибать их. Поэтому разумнее установить в различных участках термитника чувствительные микрофоны и отслеживать все звуковые сигналы.
Самый простой способ выяснить, возможна ли передача сигналов посредством поля, состоит в том, чтобы поместить часть насекомых изучаемой колонии в переносной контейнер, который можно было бы удалять на различные расстояния от основной части колонии. К примеру, можно заранее установить поблизости от гнезда металлический ящик, в котором термиты со временем соорудят дополнительные части гнезда, или контейнер с пищей, где рабочие привыкнут добывать еду. Если этот ящик удалить на некоторое расстояние от основного гнезда, насекомые внутри его все еще останутся частью колонии, но лишатся возможности поддерживать физический контакт с царицей и другими насекомыми. Несомненно, уже сам факт удаления ящика на определенное расстояние потревожит термитов, но если за насекомыми внутри ящика ведется постоянное наблюдение, можно будет заметить перемены в их поведении и после того, как будет потревожена или усыплена царица, оставшаяся в основной части гнезда.
3. Похожие эксперименты можно проводить и с муравьями, которых относительно легко содержать в неволе. С этими насекомыми можно работать не только в тропиках. В продаже имеются многокамерные контейнеры для содержания колоний муравьев. Контейнеры для содержания муравьев можно изготовить и самостоятельно, причем из самых дешевых материалов — пластиковых трубок, гипса и прозрачного стекла. Более подробные указания приводятся в конце этой книги, в разделе «Практические советы».
Самый простой вариант — двухкамерная колония, части которой соединяются пластиковой трубкой. Их можно легко отсоединить друг от друга, просто выдернув трубку и заткнув отверстия. Затем одну часть колонии можно перенести в другую комнату, а ту часть, где находится царская камера, оставить на прежнем месте. Затем надо будет как-то потревожить насекомых в оставшейся части — потрясти контейнер, пустить в него дым или усыпить царицу (к примеру, используя эфир). Одновременно необходимо внимательно следить за поведением насекомых в первом контейнере, и если в нем произойдут какие-либо изменения, это будет свидетельствовать о передаче воздействия на расстоянии.
Во всех этих экспериментах очень важно по возможности работать «вслепую». Например, тот, кто наблюдает за контрольным контейнером, не должен точно знать время, когда будут потревожены насекомые в контейнере с царской камерой. Если будут обнаружены заметные изменения в поведении муравьев, по времени совпадающие с моментом воздействия на царицу, это послужит хорошим доказательством передачи воздействия на расстоянии. В последующих экспериментах первый контейнер можно все дальше и дальше уносить от контейнера с царской камерой, чтобы таким образом оценить, на какое расстояние может распространяться дистанционное воздействие. Кроме того, надо будет проверить, блокируется ли воздействие металлическими или какими-либо иными барьерами. Если будут получены точные воспроизводимые результаты, можно будет приступить к изучению природы организующего поля.
Все эксперименты, предложенные в предыдущих главах, могут выявить наличие неизвестных современной науке связей — между домашними животными и их хозяевами, между голубями и их домом, между отдельными насекомыми внутри колонии термитов. Это наличие имеет огромное значение. Если домашние животные находятся в невидимой связи с людьми, что можно сказать о связях между людьми и дикой природой, на которых строятся тысячелетние традиции шаманизма? Если существуют связи между живыми существами различных видов, что можно сказать о неизвестных типах связи внутри одного вида?
Если навигационные способности голубей зависят от до сих пор неизвестной связи с домом, подобным образом может объясняться и способность других животных находить дорогу к дому. Такие способности могут играть важную роль в миграции птиц, рыб, млекопитающих, насекомых и других живых существ. Даже столь хорошо развитое у охотников и представителей кочевых народов чувство направления может иметь составляющую подобного рода.
Если деятельность термитов координируется неким полем, которое объединяет всех насекомых одной колонии, то возможно ли существование похожих систем взаимосвязи у других животных, включая косяки рыб и стаи птиц? Поможет ли это объяснить, каким образом такие животные способны совершать коллективный синхронный поворот, не передавая никаких сигналов друг другу? Какое отношение могли бы иметь эти неизвестные информационные поля к «групповому разуму» стадных животных и отдельных групп людей? Могут ли они оказаться аналогичными связям между домашними животными и их хозяевами?
Вполне возможно, что эксперименты не докажут существования таких связей, и тогда позиции скептически настроенных ученых усилятся. Неудачные попытки открыть новые типы связи укрепят всеобщую убежденность в том, что все возможные виды взаимосвязей между живыми организмами уже известны и все они могут быть полностью объяснены известными законами физики и химии.
Тем не менее возможно, что в некоторых — или даже во всех — случаях проведенные эксперименты действительно докажут существование новых типов связи. Каковы будут последствия этого открытия?
Прежде всего, очевидно, что успех одного или всех экспериментов заставил бы пересмотреть существующие в науке объяснения таких явлений, как способность животных находить дорогу к дому, миграция, чувство пространства, связь между особями, организация сообществ, а также сам феномен общения. В биологии произошла бы настоящая революция. В той или иной степени должна быть затронута и физика. Если результаты экспериментов в биологии приведут к необходимости признать существование полей или связей неизвестного типа, как это отразится на представлениях о физическом устройстве Вселенной?
Одна возможность — признать существование множества еще не открытых полей самых различных типов. Связи между домашними животными и их хозяевами, между голубями и их домом, между отдельными насекомыми в колониях термитов могут быть совершенно разной природы и не иметь между собой ничего общего. Каждая такая связь может зависеть от особого поля или особой силы, воздействующей на расстоянии. Объединенные общим свойством дистанционного воздействия, во всем остальном эти связи и поля могут сильно различаться.
Но я предпочитаю более «экономичную» гипотезу и полагаю, что эти явления вполне могут оказаться родственными. Возможно, все они представляют собой различные проявления некоего до сих пор неизвестного поля, которое охватывает отдельные части органической системы и соединяет их друг с другом (ил. 8а, 8б). Лично я предпочитаю называть их морфическими поля ми, но могут быть предложены и другие названия — к примеру, «биологические поля» или «поля жизни».
Ил. 8 а. Последовательная организация самоорганизующихся систем. Каждый уровень организации определяется характеристиками морфического поля. Если речь идет о минерале, внешняя окружность соответствует морфическому полю кристалла, окружности внутри нее— полям молекул, окружности внутри них— полям атомов, которые, в свою очередь, могут включать в себя поля субатомных частиц. Если речь идет об общественных животных, внешняя окружность может соответствовать морфическому полю сообщества, окружности внутри нее— полям отдельных особей, а следующие — полям отдельных органов
Ил. 8 б. Растяжение морфологического поля сообщества в том случае, если один или несколько членов этого сообщества отделяются от остальных. Поле действует как невидимая связь между отдельными членами сообщества. По такому принципу можно объяснить связи между отсутствующим хозяином и его домашним животным, между голубем и голубятней с оставшимися птицами, между отделенными особями и остальными насекомыми в термитнике
Рано или поздно любое поле нового типа удастся определить как разновидность какого-либо известного физического поля, даже если это станет возможным лишь после того, как будет создана общая теория поля. Подобная единая теория должна быть намного шире, чем существующие ныне теории отдельных полей, так как физики до сих пор исключают, что в природе могут существовать принципиально новые поля.
А пока что мы еще очень слабо понимаем законы природы, да и результаты предложенных опытов еще не получены, так что эти глобальные вопросы остаются открытыми.
БЕЗГРАНИЧНЫЙ РАЗУМ
РАЗУМ: ОГРАНИЧЕННЫЙ И БЕЗГРАНИЧНЫЙ
О природе нашего разума мы не знаем почти ничего. Хотя разум лежит в основе всей практической деятельности, всей интеллектуальной и социальной жизни, нам до сих пор неизвестно, что он собой представляет и на что способен. В традиционных культурах по всему миру человеческая жизнь воспринималась как часть огромной живой реальности. В соответствии с таким представлением человеческая душа существует не только в голове: она пронизывает все тело и все пространство вокруг. Душа связана с предками, с жизнью животных и растений, с землей и небесами, она может покидать тело во время сна, в состоянии транса, в момент смерти, общаясь при этом с духами предков, животными, силами природы, с эльфами, ангелами и святыми. В эпоху Средневековья в Европе преобладал христианский вариант такого мировосприятия, до сих пор сохраняю щийся в некоторых патриархальных сообществах — например, в Ирландии.
Но последние триста лет в западном мире господствует совершенно иное представление, согласно которому разум сосредоточен в голове. Такую теорию в XVII в. впервые выдвинул Декарт. Декарт не признавал, что рациональная часть сознания является всего лишь небольшой частью души, пронизывающей и оживляющей все тело. Древним представлениям об одухотворенной природе Декарт противопоставил свое понимание тела как неодушевленной машины. Животных, растения и все остальные элементы Вселенной он также провозгласил механизмами той или иной степени сложности. В теории Декарта пространство, занимаемое душой, сперва уменьшилось до границ отдельно взятого человека, а затем сжалось до небольшой области в головном мозгу, которую Декарт отождествил с шишковидной железой. Со времен Декарта такой взгляд на разум и душу практически не изменился, разве что место обитания души сдвинулось на пару дюймов, в кору головного мозга.
Представление об ограниченном разуме, отводящее душе место исключительно в головном мозгу, в равной мере принято в остальном непримиримыми идейными противниками — дуалистами и материалистами. Сам Декарт, основоположник картезианского дуализма, считал, что разум и головной мозг изначально различны по своей природе и каким-то образом взаимодействуют. Материалисты же отвергают эту дуалистическую концепцию «духа в машине» и считают разум исключительно одной из сторон работы головного мозга как механизма или необъяснимым «сопутствующим явлением», тенью физической активности головного мозга. Хотя такие жесткие материалистические воззрения находят поддержку у некоторых философов и идеологов, именно дуализм получил в нашей культуре более широкое распространение. Считается, что он не противоречит здравому смыслу.
В старой научно-популярной литературе механизм мышления образно представлялся системой под управлением крошечных человечков, обитающих внутри головного мозга (ил. 9). Современная наука несколько модернизировала это представление, но «гомункулы» в той или иной форме сохранились. Например, на постоянной выставке в Музее естественной истории в Лондоне, называющейся «Управление вашими действиями», можно увидеть, как работают наши мозг и тело, заглянув в плексигласовое окошко во лбу манекена. Внутри головы создана модель кабины современного реактивного самолета с рядами всевозможных табло и рукоятками компьютеризованной системы управления полетом. Там же расположены два пустых кресла. Вероятно, одно из них предназначено для вас, пилота-призрака, а второе — для вашего коллеги из второго полушария головного мозга. Эффектная компьютерная метафора, по сути, недалеко ушла от старых картезианских представлений: если головной мозг является набором устройств, а привычки и навыки — программным обеспечением, тогда сами вы оказываетесь программистом-призраком.
Ил. 9а. «Гомункулы» внутри головного мозга:
иллюстрация в научно-популярной книге, озаглавленной «Секрет жизни: человек-машина и как она работает» (Kahn, 1949). Подпись под иллюстрацией гласит: «Вот что происходит в глазах, головном мозгу и гортани, когда мы видим автомобиль, узнаем его и произносим
слово "автомобиль"»
Ил. 9б. «Гомункулы» внутри головного мозга:
иллюстрация в современной книге для детей, озаглавленной «Как работает ваше тело» (Hindley, Rawson, 1988). Эта книга широко используется в британских школах.
1 — этот участок отвечает за физические действия, он часто сверяется с памятью, чтобы помочь телу решить, что делать; потом он посылает мышцам команду выполнить действие; 2 — этот участок получает сведения от органов чувств; он помогает телу выполнить план действий и может отложить на время те сообщения, которые сочтет менее важными; 3 — память сортирует и отправляет на хранение сообщения, поступающие от органов чувств; это помогает оценивать значение новых сообщений; 4— этот участок получает большое количество сообщений от органов чувств; он сверяется с памятью, чтобы помочь телу распознать, что они означают; 5 — все сообщения проходят через этот участок; он отвечает за срочные действия: будит вас по утрам, заставляет вступить в бой или убежать в случае опасности; 6— этот участок просто поддерживает вашу жизнедеятельность: он заставляет сердце биться, заставляет вас дышать, он действует даже тогда, когда вы спите; 7— нервные волокна, по которым сигналы от органов чувств передаются в головной мозг; 8 — некоторые действия вы выполняете не задумываясь: например, отдергиваете руку, если прикасаетесь к чему-то горячему; сообщение о неприятном прикосновении заставляет мышцы работать еще до того, как попадет в головной мозг; 9 — нервные волокна, по которым команды головного мозга передаются мышцам
Действительно ли человек готов считать себя машиной? Похоже, что даже самые ревностные философы-материалисты и ортодоксальные ученые не считают эту гипотезу серьезной или, по крайней мере, не применяют ее к себе и к тем, кого любят. В противовес официально высказываемым взглядам, в частной жизни большинство людей в той или иной степени все еще придерживаются более широких архаических воззрений. Во-первых, люди уверены, что душа охватывает не только головной мозг, но и гораздо большую область тела. Во-вторых, многие полагают, что душа проникает в обширные области психики и духа, выходящие далеко за пределы человеческого тела.
В соответствии с индуистскими, буддийскими и другими древними представлениями, в человеческом теле находится несколько жизненно важных центров, каждый из которых обладает своими особыми свойствами. Точно так же, по представлениям западного человека, в теле существует несколько центров душевной жизни. Например, некоторые говорят, что чуют что-то «нутром». Хотя с механистической точки зрения сердце — всего лишь насос, перекачивающий кровь, такие выражения, как «сердечная благодарность», «бессердечный поступок» и «сердечность» имеют совершенно определенный психологический смысл. Не случайно именно сердце считается символом любви. Наши предки полагали, что именно в сердце, а не в головном мозгу находится главный центр духовной жизни. Сердце считалось не только средоточием эмоций, любви и симпатии, но и центром мышления и воображения. Именно так и в наши дни воспринимают сердце многие представители традиционных культур, в том числе тибетцы. В этом же смысле сердце до сих пор упоминается в христианской литургии: в магнификате звучат слова: «...рассеял надменных помышлениями сердца их», а в коллекте из «Книги общей молитвы» говорится: «Боже Всемогущий, коему открыты все сердца, все желания известны, и от коего никаких тайн не утаить, очисти помышления сердец наших и вдохни в них Дух Святой».
Древнее понимание души как субстанции, простирающейся за пределы тела, также широко распространено в нашей культуре. Оно отражается в некоторых приметах — например, в распространенном поверье, что человек, которого обсуждают за глаза, краснеет или икает. На его основе построены теории телепатии и некоторых других парапсихологических явлений. В Великобритании, США и других странах Запада опросы общественного мнения постоянно показывают, что подавляющее большинство населения верит в подобные феномены, а более 50% опрошенных заявляют, что лично с ними сталкивались[127].
Такие представления и верования невозможны, если разум ограничен пределами головного мозга и все способы общения исчерпывающе описываются известными законами физики. Именно потому защитники ортодоксальных механистических воззрений нередко заявляют, что, поскольку паранормальные явления необъяснимы с научной точки зрения, они просто не могут существовать в природе. Вера в паранормальное считается суеверием, и потому с нею принято бороться с помощью научного просвещения.
То, что раньше считалось передовой философией, в наши дни превратилось в ортодоксальную доктрину, которую мы бездумно усваиваем в детстве, а впоследствии считаем само собой разумеющейся. Классические исследования Жана Пиаже в области умственного развития европейских детей 10 — 11 лет показали, что большинство детей уже усвоили то, что сам исследователь назвал «правильным» взглядом на окружающий мир, и уверены, что мысли рождаются в голове[128]. Дети младшего возраста, напротив, верят в то, что во сне покидают свои тела; что они неотделимы от живой природы и причастны к ее жизни; что мысли находятся во рту, в дыхании и окружающем воздухе; что слова и мысли могут оказывать магическое воздействие на расстоянии. Короче говоря, маленькие дети в Европе демонстрируют анимистическое отношение к миру, характерное для большинства древних культур и преобладавшее в европейской культуре до тех пор, пока не разразилась механистическая революция.
Однако картезианская теория нематериального разума, располагающегося внутри машиноподобного головного мозга, с самого начала столкнулась с серьезными проблемами. Сведя понятие души к рациональному уму, Декарт отверг как материальные, так и бессознательные аспекты души, ранее не вызывавшие сомнений. После Декарта понятие бессознательного пришлось вводить заново[129]. Например, в 1851 г. немецкий врач К.Г. Карус начал свой трактат о бессознательном такими словами:
«Ключ к пониманию природы сознательной жизни души лежит в сфере бессознательного... Духовную жизнь можно сравнить с широкой, мерно текущей рекой, лишь один-единственный маленький участок которой освещен солнцем»[130].
Благодаря работам Зигмунда Фрейда понятие бессознательного нашло широкое признание у психотерапевтов. В описании коллективного бессознательного у Карла Юнга душа уже не ограничивается отдельным разумом, а охватывает всех людей. Она включает в себя некую коллективную память, к которой причастен на бессознательном уровне разум каждого индивида.
Играет свою роль и возрастающий интерес к традиционным воззрениям Индии и Китая, к буддийской философии. Все эти системы мировоззрения включают куда более глубокие представления о связи души и тела, чем может предложить механистическая теория. Кроме того, благодаря исследованиям в таких областях, как воздействие галлюциногенных наркотиков, изучению шаманских визионерских техник и процессов, протекающих в ходе медитации, многие представители западной культуры смогли на собственном опыте ощутить другие измерения сознания.
Таким образом, хотя в механистической науке и медицине область разума до сих пор ограничивается пределами головного мозга, наряду с этим представлением существуют отголоски древнего, более широкого понимания души. Точно так же они сосуществуют, и когда мы говорим о воззрениях Юнга и трансперсональной психологии, исследованиях в области психологии и парапсихологии, мистических и визионерских традициях, холистических методах в медицине и целительстве.
Эксперименты, предлагаемые в данной части книги, призваны проверить, действительно ли разум может простираться за пределы головного мозга, как было принято считать на протяжении почти всей истории человечества. Хотя теория ограниченного разума лежит в основе механистического мировоззрения, она не является неоспоримой догмой, на которую наука будет опираться всегда. Это всего лишь одна из возможных гипотез, подлежащих экспериментальной проверке. Именно с этой целью и спланированы предлагаемые ниже опыты.
ОЩУЩЕНИЕ ПРИСТАЛЬНОГО ВЗГЛЯДА
ВЫХОДИТ ЛИ РАЗУМ ЗА ПРЕДЕЛЫ ГОЛОВНОГО МОЗГА?
Когда мы смотрим на предметы, где мы их видим в действительности? Находятся ли образы внутри мозга или снаружи — именно там, где мы их видим? Общепринятое научное разъяснение гласит, что эти образы находятся внутри головного мозга. Однако эта теория может быть совершенно ошибочной. Образы могут находиться и вне нас. Не исключено, что зрение представляет собой двусторонний процесс: поток света, направленный внутрь, и проекцию мысленных образов наружу.
Например, пока вы читаете эту страницу, лучи света, отражаясь от ее поверхности, попадают в глаза, формируя перевернутое изображение на сетчатке. Это изображение регистрируется светочувствительными клетками, от которых нервные импульсы по зрительным нервам попадают в головной мозг, где происходят сложные электрохимические процессы. Все это было тщательно исследовано методами нейрофизиологии. Но теперь наступает самое удивительное. Вы каким-то непостижимым образом осознаете образ страницы. Вы ощущаете этот образ вне себя, перед своим лицом. С общепринятой научной точки зрения это ощущение является иллюзорным. Считается, что образ страницы находится внутри вас — как и все остальные продукты мыслительной деятельности.
Представители традиционных культур во всем мире придерживаются на сей счет иного мнения. Они доверяют собственному опыту, подсказывающему им, что зрение не ограничено пределами тела. Точно так же, как свет попадает в глаза, зрительный образ выходит через глаза наружу. Подобным образом в нашей культуре представляют себе зрение дети[131]. Однако примерно к одиннадцати годам они привыкают думать, что мысли и ощущения находятся не за пределами тела, а в голове[132]. Таким образом, теория торжествует над опытом, а метафизическая догма принимается как объективный факт. С точки зрения образованного человека, маленькие дети, равно как и необразованные люди и дикари, мыслят непоследовательно. Они не видят различия между внутренним и наружным, между субъективным и объективным, в то время как то и другое принято строго разделять.
Давайте на минуту представим, что мы ошибаемся, а маленькие дети и представители традиционных культур вовсе ничего не путают. Проведем простой мысленный эксперимент и позволим себе довериться непосредственным ощущениям, не пытаясь опровергать их рационально. Позволим себе представить, что все предметы, которые мы воспринимаем вокруг себя, действительно находятся вокруг нас. К примеру, ваш мысленный образ этой страницы в самом деле находится там, где вы его видите, то есть перед вами.
Эта идея настолько проста, что ее трудно осознать сразу. Находясь в полном соответствии с нашими непосредственными ощущениями, она подрывает все, во что нас заставили верить, — все представления о природе разума, о субъективности личного опыта и разделении субъективного и объективного. Она предполагает, что зрение — не односторонний процесс, как мы привыкли считать, а двусторонний. Так же, как свет поступает к нам через глаза, мысленные образы через глаза проецируются наружу, в окружающий мир.
Зрительные образы — это ментальные конструкции, в формировании которых участвует интерпретирующая функция мозга. Следовательно, они находятся у нас в уме. Но с другой стороны, мы предположили, что они пребывают вне нашего тела. А если зрительные образы присутствуют в нашем разуме, но вне нашего тела, это значит, что сам разум простирается за пределы тела. Он выходит за рамки телесной оболочки, чтобы прикоснуться ко всему, что мы видим. Если мы посмотрим на дальние звезды, наш разум вытянется на астрономическое расстояние, чтобы «коснуться» этих небесных тел. Отделить друг от друга субъективное и объективное окажется уже не так просто. Посредством зрительных образов окружающая среда проникает в нас, но и наш разум, простираясь за пределы тела, проникает в окружающую среду.
В обычном состоянии сознания воспринимаемые объекты — к примеру, страница, которую вы сейчас читаете, — совпадают с их зрительными образами. Под влиянием иллюзии или галлюцинации мысленные образы не совпадают с предметами, которые находятся вокруг нас, но тем не менее тоже способны проецироваться во внешний мир. (К этому вопросу я вернусь в главе 5, посвященной фантомным ощущениям в ампутированных конечностях.)
Идея безграничного разума может восприниматься как игра слов или как интеллектуальное упражнение. Ее можно счесть и недопустимым смешением философских категорий, которые мы обязаны четко разделять: физического (или объективного), с одной стороны, и феноменологического (или субъективного) — с другой. Но в действительности это не просто игра слов и не чисто умозрительное построение. Безграничный разум может проявляться вполне материально. Если наш разум выходит за пределы тела и «касается» того, на что мы смотрим, значит, мы можем оказывать таким образом определенное воздействие на окружающий мир. К примеру, непосредственно воздействовать на другого человека взглядом.
Некоторые люди утверждают, что способны почувствовать на себе чужой взгляд, причем даже тогда, когда не видят, кто на них смотрит. Существует ли какое-то подтверждение их словам? Например, можно ли почувствовать, что на нас смотрят, со спины? Сразу вспоминается множество устных свидетельств, подтверждающих, что это действительно так. Многие люди ощущали на себе пристальный взгляд, а обернувшись, убеждались в том, что не ошиблись. Бывает и наоборот: некоторые люди пристально смотрят в спину другим — например, в аудитории, — отчего наблюдаемый начинают беспокоиться и в конце концов оглядываются.
СИЛА ВЗГЛЯДА
Чувство, что вас кто-то разглядывает, знакомо многим. В ходе неформального опроса общественного мнения в Европе и США примерно 80% опрошенных заявляли, что испытывали подобные ощущения. В произведениях художественной литературы нередко можно встретить фразы типа «она чувствовала позади его взгляд, буравящий шею». Это ощущение считали само собой разумеющимся и очень точно изображали такие писатели, как Л.Н. Толстой, Ф.М. Достоевский, Анатоль Франс, Виктор Гюго, Олдос Хаксли, Д.Г. Лоуренс, Дж. Каупер Поуис, Томас Манн и Дж.Б. Пристли[133]. Вот пример из рассказа Артура Конана Дойла, создателя Шерлока Холмса:
«Этот человек интересует меня в психологическом отношении. Сегодня утром во время завтрака я внезапно ощутил смутное чувство неловкости, какое испытывают некоторые люди, когда на них кто-нибудь пристально смотрит. Я быстро поднял голову и встретил напряженный, почти свирепый взгляд Горинга, но выражение его глаз мгновенно смягчилось, и он бросил какое-то тривиальное замечание о погоде. Странно: по словам Хертона, почти такой же случай произошел с ним вчера на палубе»[134].
Опытная британская исследовательница в области парапсихологии Рене Хайнс так описала некоторые частные наблюдения на эту тему:
«Побуждение обернуться у разных людей проявляется с различной силой. Некоторые — к примеру, официанты — почти не подвержены взгляду, не замечают его или сопротивляются такому воздействию. Эксперименты, проводимые в более подходящих условиях — например, на скучной лекции или в переполненном кафе, — показывают, что, если пристально смотреть в затылок какому-либо человеку, в большинстве случаев это вызовет него чувство беспокойства и он начнет оборачиваться, отыскивая вас. Подобный эксперимент можно проводить со спящими собаками и кошками,— не говоря уже о детях, будить которых таким способом куда гуманнее, чем мокрой губкой, — а также с птицами в саду»[135].
Возможно, что воздействие взгляда играет важную роль во взаимоотношениях людей с домашними животными, причем не только животные реагируют на взгляд людей, но и люди могут реагировать на взгляд животных. В рассказе «Зов предков» Джек Лондон, знаменитый писатель и большой знаток поведения собак, описал отношения между человеком и псом по кличке Бэк:
«Он мог часами лежать у ног Торнтона, с напряженным вниманием глядя ему в лицо и словно изучая его. (...) А иногда ложился подальше, сбоку или позади хозяина, и оттуда наблюдал за его движениями. Такая тесная близость создалась между человеком и собакой, что часто, почувствовав взгляд Бэка, Торнтон поворачивал голову и молча глядел на него. И каждый читал в глазах другого те чувства, что светились в них»[136].
Известно также много свидетельств о пристальном взгляде других животных, в частности диких. Так натуралист описывает воздействие взгляда лисицы:
«Я много часов провел поблизости от лисьих нор и всегда наблюдал превосходную, по всей видимости, дисциплину, хотя ни разу не слышал, чтобы лисица издавала рычание или предостерегающий лай. Часами, забыв обо всем на свете, лисята резвились в лучах послеполуденного солнца. Некоторые подкрадывались к воображаемой мыши или кузнечику, другие изображали своих взрослых родителей на охоте или в драке. Понаблюдав за этими очаровательными малышами, можно заметить, что лисица, лежащая где-нибудь в стороне, откуда ей хорошо видно детенышей и ближайшие окрестности, непрерывно следит за своим выводком, хотя не издает ни звука. Всякий раз, как только кто-нибудь из лисят отбежит слишком далеко от норы, лисица сразу поднимает голову и начинает внимательно смотреть на своего детеныша. Каким-то непостижимым образом этот взгляд оказывает такое же воздействие, как голос: он тут же останавливает лисенка, как будто мать крикнула что-то вслед или позвала его. Если бы это случилось только раз, такое поведение можно было бы посчитать случайностью, но подобное происходило снова и снова. Каждый раз заигравшийся лисенок внезапно останавливался, оборачивался, как будто услышав команду, ловил взгляд своей матери и возвращался назад, словно хорошо выдрессированная собака, выполняющая команду по свистку»[137].
В 80-е гг., осознав чрезвычайно важное теоретическое значение этого явления, я попытался выяснить, какие эксперименты по изучению пристального взгляда уже проводились. С удивлением я обнаружил, что исследований такого рода было проведено ничтожно мало. Я прочел лекцию по этому вопросу в Британском обществе психических исследований и надеялся, что кто-нибудь из членов этого общества поделится со мной сведениями о различных методиках проведения опытов с воздействием пристального взгляда. Ничего конкретного мне вновь не удалось узнать, хотя уважаемая Рене Хайнс рассказала множество частных случаев из практики. Я обсуждал этот вопрос и с несколькими парапсихологами в США, но выяснил только, что никто из них еще не исследовал воздействие взгляда и не интересовался этой темой всерьез[138]. Порывшись в научных архивах, я нашел всего шесть статей на эту тему, написанных за последние сто лет, причем две из них так и остались неопубликованными. Ортодоксальные психологи полностью игнорируют этот феномен, относя его к паранормальным явлениям. Это неудивительно, больше удивляет тот факт, что парапсихологи тоже словно не замечают проблемы. В большинстве книг по парапсихологии этот вопрос даже не упоминается. То, что даже парапсихологи не признают это явление, само по себе вызывает большой интерес, так как можно предположить, что мы имеем дело с со скрытым подсознательным табу. Как могло появиться это табу? Возможно, чувство, что вас кто-то разглядывает, тесно связано с древними верованиями наподобие «дурного глаза», от которых в наше время принято открещиваться как от суеверий.
ДУРНОЙ ГЛАЗ
Вера в то, что взгляд может оказывать какое-то влияние, бытует практически во всех традиционных обществах[139]. Негативная разновидность такого влияния — «дурной глаз», глаз завистника, который наносит вред всему, на что бы ни посмотрел. «Спешит к богатству завистливый человек, и не думает, что нищета постигнет его», — написано в Книге притчей Соломоновых[140]. Маленькие дети, скот, урожай, дома, автомобили и все остальное, что способно вызвать зависть, может подвергаться воздействию дурного глаза. Дурной глаз может навлечь болезнь и лишить удачи. Именно поэтому следовало принимать особые меры для защиты от дурного глаза, например носить амулеты. В современной Греции такие амулеты обычно имеют форму голубого глаза. Амулет в виде глаза ведет свое происхождение от ока Гора — одного из древнеегипетских магических талисманов[141]. Такой же талисман изображен на Большой печати Соединенных Штатов Америки; его можно увидеть на любой банкноте достоинством в 1 доллар (ил. 10).
Ил. 10. Сияющее око Гора на Большой печати Соединенных Штатов Америки в том виде, как оно изображается на денежной купюре достоинством в 1 доллар
Слово «очарование» первоначально означало колдовское воздействие, подобное парализующему жертву змеиному взгляду. В греческой мифологии взгляд Медузы — чудовища в облике женщины со змеями вместо волос — превращал человека в камень. Голова Медузы изображалась на щите богини Афины и символизировала ее грозную мощь[142]. Френсис Бэкон в своем эссе «О зависти», опубликованном в 1625 г., писал об «очаровании» в его первоначальном смысле:
«Никакая страсть так не околдовывает человека, как любовь и зависть. Им обеим свойственны пламенные желания, обе во множестве порождают вымыслы и соблазны, и обе выражаются во взгляде, особенно в присутствии своего предмета; а это всего более способствует колдовским чарам, если они вообще существуют. Недаром Писание говорит о завистливом оке... Как видно, признано, что зависть проявляется в некоем излучении. Иные подметили даже, что завистливый глаз всего опаснее, когда созерцает свой предмет в час его торжества; ибо зависть от этого обостряется»[143].
Принято считать, что зависть сильнее других чувств способна вызвать эффект «дурного глаза». Тем не менее другие отрицательные эмоции — к примеру, гнев — также проецируются посредством взгляда. В этой связи можно вспомнить выражение «смотреть волком». До сих пор в нашем «цивилизованном» обществе пристально смотреть на человека считается невежливым. Такой взгляд может вызвать ощущение дискомфорта или даже спровоцировать на агрессивные действия.
Считается, что некоторые люди обладают особо выраженной способностью воздействовать взглядом на других. Таких людей нередко опасаются, ожидая от них неприятностей, связанных с «дурным глазом». В средневековой Англии это поверье было широко распространено: женщин, обладавших особой силой взгляда, объявляли ведьмами и обвиняли в том, что они «сглазили» детей или домашних животных, в результате чего те без каких-либо видимых причин заболели. Вот что говорит на эту тему египтолог сэр Уоллис Бадж:
«Те, кто изучал причины, породившие веру в дурной глаз, приходят к различным выводам, но во всем мире, в любой культуре эта вера присутствует, сохранившись с незапамятных времен. Более того, каждый язык, древний или современный, непременно содержит выражение, равнозначное термину "дурной глаз"»[144].
Существует вера и в положительное воздействие взгляда, особенно если это любящий взгляд или взгляд праведника. В Индии, например, многие люди посещают аскетов исключительно ради того, чтобы показаться им на глаза и таким образом обрести благодать. Возможно, скрытым пережитком подобных верований является стремление современных людей увидеть королеву Великобритании, президента США, Папу Римского, поп-звезд и других известных личностей. Всех этих знаменитостей можно увидеть и по телевизору, но людей притягивает возможность живого общения, ради которого они готовы часами дожидаться кумира, чтобы увидеть его и хотя бы на мгновение завладеть его вниманием. И тогда они смогут с гордостью сказать: «Королева помахала мне рукой!»
Проанализировав эти поверья, можно прийти к выводу, что убеждение в особом воздействии взгляда распространено повсеместно. Судя по всему, эта идея основана на глубокой вере в то, что разум может выходить за пределы тела и что существует возможность влиять на то, что мы видим. Академическая наука игнорирует или отрицает такую идею, но не может привести логичного опровержения, основанного на анализе точно установленных фактов. Тема редко затрагивается в дискуссиях, и отрицание ее, вероятно, базируется на общепринятом допущении, согласно которому разум ограничивается пределами головного мозга, то есть, по сути, на картезианской теории ограниченного разума. Необъяснимое влияние взгляда не укладывается в эту теорию и потому не рассматривается как предмет научного исследования.
Очевидно, что для прояснения этой загадки недостаточно ни предвзятых мнений, сложившихся в современной науке, ни народных поверий, ни сообщений о частных случаях, ни отвлеченных споров о природе разума. Единственным способом продвинуться вперед остаются эксперименты.
НАУЧНОЕ ОБОСНОВАНИЕ
Первое сообщение об ощущении пристального взгляда как научной проблеме появилось в 1898 г. В журнале «Сайенс» была опубликована статья Э.Б. Титченера, одного из первых специалистов по научной психологии в университете Корнелла (штат Нью-Йорк):
«Каждый год некоторые студенты младших курсов настойчиво убеждают меня, будто они могут "почувствовать", когда кто-то смотрит на них сзади, а часть из них к тому же уверены в том, что, пристально посмотрев в затылок сидящего перед ними человека, они могут силой своего взгляда заставить того обернуться и посмотреть им в лицо»[145].
Титченер был уверен, что эти факты должны иметь рациональное объяснение, и не допускал существования каких-либо мистических влияний. Стоит подробно ознакомиться с его отчетом, поскольку точно такое же объяснение могут дать и современные скептически настроенные ученые:
«Физиологию указанных явлений можно описать следующим образом.
1. Каждый из нас в той или иной степени испытывает беспокойство, когда у него за спиной находятся другие люди. Если вы взглянете на сидящих зрителей до того, как их внимание будет поглощено музыкой или лекцией, ради которой они собрались, вы заметите, что подавляющее большинство женщин постоянно подносят руку к голове, поправляя и приглаживая волосы, и каждая из них в тот или иной момент оглядывается через плечо. Точно так же мужчины часто смотрят через плечо, поглаживая лацканы пиджака и стряхивая несуществующую пылинку или поправляя галстук. (...)
2. Так как аудитория или зрительный зал заполнены и люди сидят рядами друг за другом, причем большинство из них совершает описанные выше движения, вполне естественно, что кто-то может повернуть голову чуть сильнее, и тогда его взгляд непроизвольно скользнет по той части зала, которая находится позади. (...) Все эти действия никак не связаны с тем, что кто-то пристально смотрит из задних рядов.
3. Теперь обратим внимание на следующее. Любое событие среди неподвижно сидящих людей — необычный вид, какой-либо звук, прикосновение или любое другое нарушение общего порядка — сильнейшим образом привлекает внимание присутствующих. (...) Поэтому если я — А — сижу в задних рядах аудитории, а Б, сидящий впереди меня, производит какие-либо движения головой или рукой в поле моего зрения, мой взгляд неизбежно и самопроизвольно обратится к нему. Если Б, непроизвольно оглядываясь, начинает скользить взглядом по задней части зала, я, разумеется, буду внимательно за ним следить. По теории вероятности, одновременно со мной по тем же самым причинам за Б будут внимательно следить еще несколько человек, сидящих в разных частях аудитории. С кем-то из нас он непременно встретится взглядом. Совершенно очевидно, что на таких совпадениях и могут строиться теории личного притяжения или телепатического влияния.
4. Теперь мы объяснили все, кроме ощущения, которое Б чувствует затылком. Причина, вызвавшая это ощущение, является вымышленной. Действительная причина в том, что область затылка чувствительна сама по себе, в ней почти постоянно ощущаются тяжесть и напряжение кожи, мышц, связок и суставов. В описанных случаях это ощущение специально выделяют, привлекая к нему повышенное внимание. Из-за дискомфорта в условиях переполненного зала или аудитории чувствительность затылка проявляется сильнее. Потребность оглянуться в этом случае ничуть не более таинственна, чем потребность изменить положение на стуле, когда нам становится неудобно сидеть, или потребность повернуть ухо к источнику звука, когда нам плохо слышно.
В заключение я могу заявить, что лично неоднократно проверял изложенную выше интерпретацию "ощущения пристального взгляда" в серии лабораторных экспериментов, проведенных с людьми, утверждавшими, что особенно чувствительны к чужому взгляду, а также с теми, кто заявлял, что якобы "может взглядом заставить людей обернуться". Эксперименты неизменно давали отрицательный результат. Иными словами, предложенная мною интерпретация полностью подтвердилась. Если хорошо образованный читатель возразит, что эти результаты были предсказуемы, а сами эксперименты оказались пустой тратой времени, я могу оправдать их проведение. Благодаря таким опытам могут быть разрушены суеверия, которые глубоко и широко укоренились в общественном сознании. Ни один научно подготовленный психолог не верит в телепатию. В данном случае разоблачение суеверий может направить студентов по правильному научному пути, и время, потраченное мной, стократно восполнится для науки»[146].
Если та часть, где говорится о «правильном научном пути», еще может показаться убедительной, все остальное свидетельствует о том, что Титченер сделал свои выводы еще до начала эксперимента. Сценарий, который он описывает, вполне мог бы включать и необъяснимое влияние пристального взгляда. Экспериментальное опровержение этого явления, подробностей которого ученый не приводит, могло иметь и другие объяснения. Например, испытуемые могли быть отвлечены скептическими замечаниями самого Титченера или чрезмерно увлечены самоконтролем, чтобы лучше выполнить задачу, когда эксперимент проходил в искусственных условиях лаборатории.
В этом заключается основная проблема, затрудняющая экспериментальное исследование данного явления. «Ощущение пристального взгляда» в естественных условиях может работать на уровне подсознания. Попытки провести эксперимент в искусственных условиях и стремление испытуемого сознательно определить, чувствует он пристальный взгляд или нет, могут вызвать затруднения, особенно если ранее испытуемый не участвовал в подобного рода экспериментах. Более того, в реальной жизни воздействию пристального взгляда сопутствует множество эмоций — к примеру, гнев, зависть или сексуальное влечение. Если при проведении эксперимента исключить всякую мотивацию, оставив только научную любознательность, эффект может оказаться очень слабым.
Результаты второго исследования в этой области были опубликованы в 1913 г. Д.Э. Кувером. Следуя Титченеру, он провел опрос среди студентов младших курсов Стэнфордского университета и обнаружил, что 75% опрошенных студентов верят в реальность ощущения пристального взгляда. Затем он провел экспериментальную проверку этой способности у 10 испытуемых. Экспериментатор пристально разглядывал каждого испытуемого, находясь позади него. С каждым испытуемым было проведено по 100 опытов. В ходе испытаний экспериментатор (сам Кувер или его помощник) смотрел на испытуемого или в сторону в случайной последовательности, стуком предупреждая о начале эксперимента. Испытуемый в этот момент должен был ответить, смотрят на него или нет, а потом рассказать о своем ощущении и о том, насколько твердо он был уверен, что на него смотрят. Общие результаты показали, что испытуемые давали правильный ответ в 50,2% случаев, что весьма незначительно превышает случайный уровень, равный 50% (50 случаям из 100 в данном эксперименте). Тем не менее, когда испытуемые заявляли, что твердо уверены в том, что на них смотрят, правильные ответы составили 67%, а когда у них не было полной уверенности, результат примерно соответствовал случайному. Кувер пренебрег этой особенностью и пришел к выводу, что, хотя вера в ощущение пристального взгляда широко распространена, «эксперимент показывает, что она не имеет под собой оснований»[147].
На этом исследования по данному вопросу закончились. Перерыв продолжался почти полвека — до тех пор, пока в 1959 г. Дж.Дж. Пуртмен в журнале «Джорнэл оф сосайети фор сайкикал рисеч» вновь не обратился к этой проблеме[148]. Он описал опыты, которые провел в Голландии с участием своей знакомой, пытавшейся воздействовать на него взглядом. Эта дама была членом городского совета Гааги и рассказывала Пуртмену, что «использует силу взгляда, чтобы воздействовать на того человека в собрании, с которым ей хотелось бы поговорить». Пуртмен следовал тому же методу, что и Кувер. В ходе последовательности из 89 опытов, проводившихся в течение нескольких дней, дама из Гааги в случайной последовательности смотрела на испытуемого или в сторону и записывала его ответы. Испытуемый дал правильный ответ в 59,6% случаев. Этот результат был уже статистически значимым[149].
Следующий эксперимент, проведенный аспирантом Эдинбургского университета Дональдом Питерсоном в 1978 г., был поставлен еще почти через двадцать лет. В серии экспериментов, проведенных с 18 различными испытуемыми, частота правильных ответов оказалась значительно выше случайной[150].
В 1983 г. в Австралии студентка Аделаидского университета Линда Уильяме осуществила проект эксперимента, в ходе которого испытуемый и экспериментатор находились в разных помещениях, располагавшихся в 60 футах друг от друга. Экспериментатор смотрела на испытуемого через видеокамеру, а ее изображение случайным образом передавалось или не передавалось на экран, находившийся в комнате испытуемого. Каждый опыт продолжался 12 секунд. О начале каждого опыта испытуемого информировали с помощью звукового сигнала. В итоге после проверки 28 испытуемых был получен положительный результат — невысокий, но статистически значимый. Число правильных ответов превышало возможное при случайном угадывании[151].
Самый сложный в техническом отношении эксперимент по проверке данной способности был проведен в конце 80-х гг. Фондом исследований разума в Сан-Антонио (Техас). Его осуществили Уильям Брод, Сперри Эндрюс и их коллеги. В ходе эксперимента также использовалась автономная телевизионная сеть. Испытуемых просили спокойно посидеть в отведенной для них комнате в течение 20 минут, по возможности думая о чем-нибудь приятном, причем телекамера работала с самого начала эксперимента. Экспериментаторы ждали начала эксперимента в своей комнате, размещавшейся в другом блоке лабораторного комплекса. В отличие от всех ранее проводимых экспериментов, испытуемых не просили сообщать, когда они чувствуют на себе взгляд экспериментатора. Учитывались бессознательные физиологические реакции, которые фиксировались за счет базального сопротивления кожи. С этой целью на левую руку испытуемых прикреплялись электроды. Использовался тот же принцип, который лежит в основе детектора лжи: изменения в сопротивлении кожи отражают неосознаваемую активность симпатической нервной системы. В серии 30-секундных опытов на испытуемого смотрели или не смотрели в случайной последовательности. Эксперимент выявил, что показатель сопротивления кожи существенно колебался в зависимости от того, смотрели на испытуемого или нет (невзирая на то, что он не осознавал взгляда)[152].
Подведя итоги всех этих отчетов, остается прийти к следующему выводу: хотя экспериментальных исследований на эту тему проводилось ничтожно мало, полученные свидетельства позволяют предположить, что ощущение пристального взгляда действительно является реальным. Недостаточная четкость результатов во многом объясняется сложностью проведения таких опытов в искусственных условиях.
МОИ СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ
Я сам провел эксперименты двух типов. В экспериментах первого типа, которые были поставлены с несколькими группами в Европе и США, четыре человека выступали в качестве добровольцев-испытуемых и сидели в одном конце комнаты спиной к остальной группе, располагавшейся в другом конце той же комнаты. В каждом опыте все участники группы смотрели только на одного из четырех испытуемых, причем перед началом каждого опыта я случайным образом выбирал карточку с именем того испытуемого, на которого все должны были смотреть. По окончании каждого 20-минутного опыта все испытуемые записывали в журнале, чувствовали они воздействие взгляда или нет. Эксперимент продемонстрировал, что в подобных условиях большинство людей показывает результат, примерно равный случайному или незначительно его превышающий. Однако в ходе опытов я выявил двух человек, которые почти всегда давали правильный ответ, и, таким образом, их результат был значительно выше случайного.
Оказалось, что они оба ничуть не сомневались в своих способностях. Первой была молодая женщина из Амстердама, которая рассказала, что тренировала эту способность с детства, играя с братьями и сестрами, и потому в процессе эксперимента чувствовала себя уверенно. Второй, молодой человек из Калифорнии, признался, что находился под воздействием MDMA, психоактивного наркотика, более известного как «экстази», в результате чего обладал повышенной чувствительностью к любому внешнему воздействию.
Эксперимент второго типа предусматривал немедленную обратную связь: испытуемому после каждого опыта сообщали, правильно он ответил или ошибся. В других отношениях этот эксперимент был похож на предыдущий: экспериментаторы и испытуемые работали парами, и последовательность, в которой на испытуемого смотрели или не смотрели, была случайной. (Подробности этого эксперимента приводятся в следующем разделе.)
Во втором эксперименте несколько человек показали хорошие результаты и почти во всех случаях давали правильный ответ. Двое из них были родом из Восточной Европы. Возможно, жизнь при тоталитарном режиме научила их всякий раз реагировать на пристальное внимание. У подавляющего числа испытуемых результат был близок к случайному, но общий итог все же отличался от случайного на статистически значимую величину. Суммарный результат десяти различных опытов, в которых принимали участие более 120 испытуемых, был следующим: 1858 правильных ответов против 1638 неправильных. Иными словами, 53,1% ответов были правильными, что на 3,1% превышало случайный уровень. Такой результат обладает достаточно высокой статистической значимостью[153].
Таким образом, мои данные подтверждают положительные результаты экспериментов, проведенных другими исследователями. В ходе опытов подтвердился и тот факт, что большинство людей в искусственных условиях не в состоянии продемонстрировать впечатляющих результатов. Общий результат превысил случайное значение, но не намного. Проблема заключается в том, чтобы отыскать людей, у которых способность ощущать пристальный взгляд сохраняется и в искусственных условиях эксперимента. Мои предварительные данные показывают, что это вполне осуществимо. Люди определенного типа могут сохранять высокую чувствительность в любых условиях. Возможно, хорошими испытуемыми стали бы больные паранойей, но, по всей вероятности, проявления паранойи у них вызвал бы и сам эксперимент. Хорошие результаты могут показать те люди, которые обучались боевым искусствам — например, айкидо, и выработали навык хорошо ощущать окружающее пространство.
Сперва я изложу схему простого экспериментального исследования, которое пытался провести я сам. Разрабатывая его, я преследовал три цели. Во-первых, я хотел добиться максимально возможной простоты, чтобы эксперимент было несложно провести на практике. Достаточно разбить на пары группу людей, собравшуюся, к примеру, во время тренировки, в учебном классе или на семинаре. Можно провести его и дома, и в любом другом месте. Для эксперимента не нужно ни лаборатории, ни специального оборудования, только карандаш, лист бумаги и одна-единственная монетка, которую можно использовать сколько угодно раз. Таким образом, эксперимент не потребует никаких финансовых затрат.
Во-вторых, в ходе эксперимента можно будет отобрать людей с повышенной чувствительностью и затем привлечь их к участию в более сложных исследованиях.
В-третьих, эксперимент позволит выявить людей, которые в ходе предыдущих опытов показали не слишком хорошие результаты и были отвергнуты, но затем улучшили свои способности. Предложенный опыт даст им возможность освоиться с искусственными условиями и в дальнейшем участвовать в более сложной научной работе.
В ходе опыта участники работают парами, причем испытуемый садится спиной к экспериментатору. В случайной последовательности экспериментатор или смотрит в спину испытуемому в течение 20 секунд, или те же 20 секунд смотрит в сторону и думает о чем-нибудь не относящемся к партнеру и эксперименту. Случайная последовательность определяется с помощью монетки, которую экспериментатор подбрасывает перед каждым опытом: орел — «смотреть», решка — «не смотреть». Хлопком, щелчком или каким-нибудь другим способом экспериментатор сигнализирует испытуемому о начале опыта, а тот за время опыта должен сообщить, смотрят на него или нет. Для подачи сигнала лучше использовать какое-нибудь механическое или электронное приспособление, так как при подаче сигнала рукой экспериментатор может подсознательно подсказывать испытуемому, меняя громкость или характер хлопка. Экспериментатор записывает результат, а затем сообщает испытуемому, правильно тот ответил или нет. Потом экспериментатор вновь подбрасывает монетку и узнает, каким образом проводить следующий опыт. Эта последовательность повторяется до конца эксперимента. Каждый опыт проходит довольно быстро, и несложно научиться проводить такое испытание со скоростью примерно два опыта в минуту.
По собственному опыту я могу сказать, что оптимальной является серия опытов, проводимых не более 20 минут. За это время можно успеть провести сорок и более опытов. Желательно провести десять отдельных серий, используя или одну и ту же пару во всех сериях, или в каждой серии новую пару[154].
Описанная выше процедура уже была с успехом опробована в Калифорнии. Она проводилась среди 13-летних подростков, участвовавших в школьном научном проекте. Майкл Мастрандреа, ученик восьмого класса, провел 480 опытов, в которых участвовали 24 его одноклассника. В каждом случае сам он выступал в роли экспериментатора. Для подачи сигнала о начале опыта Майкл использовал электронное сигнальное устройство. Результаты показали, что правильные ответы составили 55,2%, то есть положительный результат оказался статистически значимым[155].
Тем, кто на начальных стадиях эксперимента показал не очень хорошие результаты, в качестве тренировки можно проводить 15—20-минутные серии опытов в удобное время. Таким образом можно установить нечто вроде биологической обратной связи, позволяющей оценить различные, слабо уловимые ощущения и найти собственный способ определять, когда на вас смотрят. Повышение чувствительности к пристальному взгляду можно будет обнаружить по возрастанию числа правильных ответов в последовательно проводимых сериях опытов.
Если на какой-то стадии будут выявлены особо чувствительные испытуемые, можно будет попытаться ответить и на множество других вопросов, таких, например:
1. Насколько результаты экспериментов зависят от экспериментатора? Выявляются ли такие люди, которые в роли экспериментатора обеспечивают гораздо более высокие результаты, чем остальные?
2. Сохраняется ли ощущение пристального взгляда в тех случаях, когда на испытуемого смотрят через оконное стекло? Сохраняется ли это ощущение даже в тех случаях, когда на испытуемого смотрят с большого расстояния, — к примеру, в бинокль: С помощью подобных уточняющих экспериментов можно было бы исключить вероятность, что в ходе испытаний, проводимых в одной и той же комнате, испытуемые могут каким-то образом улавливать очень слабые сигналы — например, звуки, которые издает экспериментатор, поворачивая голову. Если ощущение пристального взгляда сохранится, когда взгляд будет направлен издалека или сквозь звуконепроницаемое стекло, это может послужить серьезным доказательством прямого воздействия взгляда на людей.
3. Сохраняется ли эта способность, если смотрят не на испытуемого, а на его отражение в зеркале?
4. Сохраняется ли ощущение пристального взгляда, когда на испытуемого смотрят через видеомонитор и видеокамеру, причем испытуемый и экспериментатор находятся в разных комнатах или даже в разных зданиях? Приведенные выше результаты, полученные в Аделаиде и Сан-Антонио, показывают, что это возможно.
Можно ли использовать не автономную, а настоящую телесеть? В этом случае экспериментатор и испытуемый могут быть удалены друг от друга на сотни или даже тысячи миль, если используется спутниковое телевидение. Если предварительные экперименты покажут, что ощущение пристального взгляда сохраняется и при использовании телевидения, в прямом эфире можно будет провести эксперимент с участием миллионов телезрителей. Один из возможных вариантов эксперимента в рамках телешоу может выглядеть следующим образом. Четверо испытуемых с высокой чувствительностью к воздействию пристального взгляда размещаются в четырех отдельных комнатах перед телевизионными камерами, которые непрерывно работают с самого начала эксперимента. В серии опытов телезрители видят только одного из испытуемых, который определяется случайным образом. В конце каждого опыта все четверо испытуемых нажимают одну из кнопок: «да» или «нет». Телезрители видят табло, на котором регистрируется число правильных и неправильных ответов каждого испытуемого. Продолжительность каждой серии опытов не должна превышать 10 минут. Статистический анализ полученных результатов можно будет практически мгновенно провести с помощью компьютера, а оставшееся время посвятить обсуждению результатов.
Если будут выявлены испытуемые с высокой чувствительностью к воздействию взгляда, проведение описанного выше эксперимента на телевидении вполне возможно. В этом меня заверили телепродюсеры в Европе и США. Такие эксперименты были бы выгодны телекомпаниям и одновременно пробудили бы в обществе немалый интерес к этой теме.
6. Как соотносятся способность ощущать воздействие взгляда и телепатия? Действительно ли пристальный взгляд оказывает большее воздействие на человека, чем просто мысль о нем? Есть способ выяснить это с помощью эксперимента. Например, в эксперимент можно добавить третий вариант опыта, при котором экспериментатор не смотрит на испытуемого, но думает о нем. Таким образом, случайно выбирается один из трех вариантов: «смотреть», «думать, но не смотреть», «не смотреть и не думать». Лично я предполагаю, что воздействие взгляда должно ощущаться сильнее, чем просто мысль.
Это лишь несколько из множества экспериментов, которые можно провести с чувствительными испытуемыми, но приведенных примеров вполне достаточно, чтобы показать, каким образом эта тема очень быстро могла бы стать весьма перспективной областью исследований, открытой для всех. Последствия могут оказаться ошеломляющими[156].
РЕАЛЬНОСТЬ АМПУТИРОВАННЫХ КОНЕЧНОСТЕЙ
ОЩУЩЕНИЕ АМПУТИРОВАННЫХ КОНЕЧНОСТЕЙ
Когда люди физически утрачивают какую-либо конечность, у них сохраняется ощущение, что она находится на прежнем месте. Отсутствующая конечность ощущается так же, как и прежде, даже если она уже не существует материально. К какому типу реальности можно отнести это ощущение?
Только в США в настоящее время проживают свыше 300 тысяч человек, у которых ампутирована рука или нога; из них более 26 тысяч — ветераны войны[157]. Почти у каждого из них после операции остаются фантомные ощущения в ампутированных конечностях. Хотя некоторые фантомные ощущения со временем ослабевают, они редко исчезают совсем. В большинстве случаев они остаются отчетливыми и причиняют немало страданий. Фантомные боли в ампутированных конечностях поистине невыносимы.
Сразу после ампутации фантомные ощущения могут быть настолько яркими, что, к примеру, человек, у которого ампутирована нога, часто забывает, что ее больше нет. Некоторые даже падают, когда пытаются вставать и идти. Другие “невольно пытаются дотянуться рукой до несуществующей ноги, чтобы почесать ее”[158]. Люди, у которых недавно ампутирована рука, часто пытаются взять несуществующей рукой телефонную трубку или какой-нибудь другой предмет.
Инвалиды не только чувствуют форму, положение и движение утраченной конечности, но, как правило, испытывают в ней и другие ощущения, такие, как зуд, тепло или вращение. Фантомно ощущаемые конечности могут двигаться, при этом находясь в координации с остальным телом. Они кажутся полностью реальными. Фантомно ощущаемая ступня не болтается в воздухе на несколько дюймов ниже культи, а ощущается как живая часть тела и движется в соответствии с движениями других конечностей и туловища[159]. Одна из особенностей фантомно ощущаемых ампутированных конечностей, вполне соответствующая их нематериальной природе, заключается в том, что они могут свободно проникать сквозь твердые предметы, к примеру кровать или стол.
От инвалидов я получил десятки подробных и интересных сообщений по поводу фантомного ощущения ампутированных конечностей. Некоторые письма пришли в связи с моей статьей, опубликованной в 1991 г. в журнале “Буллетин оф инститьют оф ноуэхик сайенс”. Кроме того, мне писали некоторые читатели журнала “Ветеранз оф форин уорз”, где в апрельском номере за 1993 г. доктор Дикси Макрейнолдс опубликовал сообщение от моего имени. Приведу сообщение г-на Германа Берга, ветерана, потерявшего ногу в 1970 г.:
“К различным ощущениям, зуду и приступам острой боли со временем можно привыкнуть, хотя иногда страдания вновь делаются невыносимыми. Кроме того, ампутация превращает вас в самого надежного синоптика. Инвалиды всегда чувствуют грядущую перемену погоды и могут абсолютно точно предсказать, как именно она изменится. Лично я всегда могу ощутить утраченную ногу как живую. Прежде всего, я чувствовал, что она свесилась с кровати или вытянулась прямо. Такое ощущение то исчезает, то вновь появляется. Несколько дней я могу не замечать ничего подобного. Кроме того, мысленно я могу согнуть пальцы, колено или любой другой сустав, могу ощущать их движение, хотя все нервы перерезаны.
Сейчас, когда пишу эти строки, я сижу за столом в шортах и чувствую отсутствующую ногу именно там, где она должна быть, когда я сижу на стуле. Я даже ощущаю пальцы ампутированной ноги”.
Многие инвалиды время от времени страдают от боли, но, если боль концентрируется не в культе, а в фантомно ощущаемой конечности, врачи обычно не в состоянии помочь. Некоторый эффект оказывают терапевтическая медитация и методы биологической обратной связи[160]. Некоторые инвалиды пытаются найти облегчение в алкоголе или наркотиках. Однако многие из них учатся жить с этой проблемой, проявляя при этом большое мужество и оптимизм. Например, г-н Лео Унгер получил тяжелейшее увечье обеих стоп, подорвавшись на мине, когда в 1944 г. сражался в Европе. Теперь ноги у него ампутированы ниже колен.
“С самого начала у меня было ощущение, что ноги и ступни остались на месте. Вначале я страдал от сильнейших фантомных болей, мне казалось, что от голеней к пальцам перекатываются раскаленные шары. С тех пор прошло уже двадцать лет, и теперь я редко испытываю такие боли, но часто появляется чувство, что мои ноги на месте и в них только сломаны кости, как это и было после того, как меня ранило. Я научился управлять своими чувствами, и эти ощущения прошли.
Много лет я работал служащим по исковым заявлениям в компании по общему страхованию Фермерского бюро штата Иллинойс. Когда кто-то из сельскохозяйственных рабочих терял ногу из-за несчастного случая на комбайне (таких случаев было немало, особенно когда использовались машины старого образца), я навещал его вскоре после происшествия. Первое, что я говорил: “Благодари Бога, что ты потерял только одну ногу, а не стал полным калекой”. Затем я снимал протез, примерно подходящий и для него, и показывал, как выглядит зажившая культя и как на ней крепится протез. Нередко инвалиды пишут письма в мою компанию и сообщают, что встреча со мной помогла им больше, чем страховое вознаграждение за увечье.
Я не могу бегать, но тружусь на ферме, помогаю при дойке коров, продаю страховые полисы, работаю служащим по исковым заявлениям — короче, уже почти полвека я живу вполне полноценной жизнью”.
ДРУГИЕ ВИДЫ ФАНТОМНЫХ ОЩУЩЕНИЙ
Другие части тела после ампутации тоже могут вызывать фантомные ощущения — к примеру, нос, яички, язык, груди, половой член, мочевой пузырь и прямая кишка[161]. Иногда эти фантомные ощущения оказываются довольно приятными, например у некоторых женщин после ампутации груди:
“Безболезненное фантомное ощущение после ампутации молочной железы — самой чувствительный области груди — обычно бывает даже приятным, потому что кажется, будто грудь не стеснена бюстгальтером. Однако если после удаления груди возникают фантомные боли, они очень мучительны”[162].
Точно так же фантомные ощущения после ампутации полового члена могут быть приятными, а могут быть сопряжены с большими страданиями. У некоторых мужчин, которые испытывают безболезненные ощущения в ампутированном половом члене, возникает фантомное чувство эрекции, а иногда даже фантомное ощущение оргазма. В то же время другие испытывают невыносимую боль в ампутированном половом члене. Один из них “испытывал эту боль постоянно и часто пытался дотянуться до ампутированного члена и сжать головку, чтобы унять боль”[163].
Фантомные ощущения в других удаленных органах могут быть ничуть не менее реальными. Некоторые люди с фантомными ощущениями в удаленном мочевом пузыре жаловались, что часто возникает чувство его переполнения и даже мочеиспускания. У людей с фантомными ощущениями в удаленной прямой кишке возникает весьма реальное ощущение, будто они “выпускают газы или даже испражняются”2.
Наиболее часто происходит утрата одного или нескольких пальцев на руках и ногах, поэтому и фантомные ощущения в ампутированных пальцах — самый распространенный из всех видов. Например, журнал “Бритиш медикал джорнэл” сообщал о том, как один моряк, случайно отрезавший себе указательный палец на правой руке, в течение нескольких десятилетий страдал от фантомных ощущений в потерянном пальце. Ему все время казалось, что этот палец неестественно вытянут, как это действительно было в тот момент, когда палец был случайно отрезан. Всякий раз, когда этот моряк подносил правую руку к лицу — чтобы дотронуться до носа или во время еды, — он боялся, что ампутированный палец может ткнуть его в глаз. Хотя моряк понимал, что это невозможно, фантомные ощущения в отсутствующем пальце были непреодолимы[164].
ИСКЛЮЧЕНИЯ
Хотя утрата отдельных органов тела, как правило, всегда приводит к появлению фантомных ощущений, бывают и исключения. У некоторых людей, потерявших какие-то части тела во младенчестве или раннем детстве, фантомные ощущения в утраченных органах обычно не возникают. Точно так же не возникают фантомные ощущения в потерянных пальцах у больных проказой. В отличие от потери пальцев в результате несчастного случая или ампутации, потеря пальцев в результате заболевания проказой происходит постепенно и растягивается на десять лет, а то и на более длительный срок. Полной утрате пальца предшествует постепенная дегенерация нервных окончаний и полная потеря чувствительности в частях тела, пораженных заболеванием. Проказа протекает безболезненно, и отмирающие части тела могут быть серьезно травмированы и инфицированы без особых болезненных ощущений. Сильно пораженные части тела иногда приходится удалять. Но сразу после хирургической операции на культях или после ампутации рук или ног иногда происходят поразительные явления. Даже если пораженные проказой пальцы полностью утратили чувствительность еще двадцать или тридцать лет назад, причем без появления каких-либо фантомных ощущений, сразу после операции в ампутированных пальцах внезапно появляются чрезвычайно сильные фантомные ощущения![165]
Одна из ранних гипотез по поводу фантомных ощущений в утраченных органах объясняла это явление наличием своеобразной памяти. На этом основании предполагалось, что фантомные ощущения не могут появиться у людей, которые родились уже без какой-либо конечности — например, вследствие приёма матерью некоторых тератогенных препаратов, таких, как талидомид, ныне запрещенный транквилизатор. Хотя большинство людей с врожденным отсутствием конечностей, видимо, не страдают от фантомных ощущений, примерно у 10—20% фантомные ощущения в отсутствующей конечности все-таки появляются[166]. У некоторых людей, рожденных без рук, появляются фантомные ощущения в пальцах, которые они даже могут мысленно сгибать. У других людей, появившихся на свет с укороченными руками, появляется фантомное ощущение рук нормальной длины. Например, один мужчина, у которого практически отсутствовало предплечье правой руки и кисть начиналась от самого локтя, субъективно ощущал, что правая рука у него такая же, как и нормальная, левая[167]. В отличие от фантомных ощущений в ампутированных конечностях, фантомные ощущения в конечностях, отсутствующих от рождения, в подавляющем большинстве случаев не сопровождаются чувством боли[168].
ФАНТОМНЫЕ ОЩУЩЕНИЯ В СОХРАНИВШИХСЯ ОРГАНАХ
Фантомные ощущения могут возникать и в тех случаях, когда теряется чувствительность конечности, а не сама конечность. У мотоциклистов в результате некоторых аварий (например, когда при падении на дорожное полотно плечо выворачивается вперед) происходит отрыв нервов руки от спинного мозга — так называемый разрыв плечевого сплетения. В подобных случаях появляются фантомные ощущения в поврежденной руке. Они обычно концентрируются на месте ставшей бесполезной настоящей руки и отождествляются с ней. Когда пострадавший закрывает глаза, фантомно ощущаемая рука может отделяться от руки из плоти и крови и существовать независимо от нее. Хотя настоящая рука никак не может реагировать на нервные импульсы, в фантомно ощущаемой руке часто возникают мучительные боли. Иногда даже прибегают к ампутации руки, потерявшей чувствительность, пытаясь таким образом избавить пациента от страданий. Но, к сожалению, фантомные ощущения руки и боли обычно остаются[169].
Фантомные ощущения также часто появляются при параличе нижних конечностей вследствие перелома позвоночника. Такие больные частично парализованы и не чувствуют или не могут управлять всеми органами тела, расположенными ниже места перелома. Тем не менее у них часто появляются фантомные ощущения в ногах и во всех органах, расположенных ниже перелома, в том числе в гениталиях.
При параличе фантомно ощущаемые органы обычно двигаются в координации с телом, особенно в тех случаях, когда у больного открыты глаза. Однако некоторые больные жалуются, что не могут удержать фантомно ощущаемые конечности в неподвижном состоянии. Например, фантомные ноги могут непрерывно совершать какие-то вращательные движения даже тогда, когда тело больного неподвижно лежит на кровати[170].
Фантомные ощущения могут возникать не только при тяжелых поражениях соответствующих нервных окончаний, но и после анестезии. Подобное явление часто встречается в хирургической ортопедии. У многих пациентов после местной анестезии позвоночника возникают фантомные ощущения в ногах, причем частота таких случаев зависит от того, в каком месте позвоночника проводится анестезия. По данным одного исследования, у 10% пациентов, которым была сделана эпидуральная анестезия, возникли фантомные ощущения. В то же время при подпаутинной анестезии доля тех, у кого появились фантомные ощущения, составила 55%[171]. У таких пациентов, когда они лежат на спине, создается иллюзия, что их фантомно ощущаемые ноги в слегка согнутом положении располагаются в воздухе над настоящими.
Точно так же анестезия нервных окончаний, идущих к плечевому сплетению, вызывает фантомные ощущения в руках. Причем они возникают даже чаще, чем при анестезии нервных окончаний ног: фантомные ощущения в руках после анестезии появляются у 90% пациентов[172]. В одном экспериментальном исследовании пациентов, которым была назначена хирургическая операция на предплечье или кисти, попросили непрерывно комментировать ощущения в руке после анестезии и сообщать о положении больной руки, показывая его здоровой рукой. Примерно через 20—40 минут после инъекции у пациентов появлялись фантомные ощущения:
“Лежа с закрытыми глазами, испытуемый сообщал, что четко ощущает положение больной руки в пространстве. Используя здоровую руку, он обычно показывал, что больная рука вначале лежит вдоль тела, а затем сгибается в локтевом суставе или находится над животом или грудной клеткой. В действительности его больная рука все время неподвижно лежала вдоль тела. Иногда экспериментатор медленно передвигал больную руку пациента таким образом, чтобы предплечье и кисть оказались около головы больного. Когда испытуемый открывал глаза, то поражался, насколько реальное положение больной руки отличалось от положения фантомно ощущаемой руки. Реальность фантомно ощущаемой руки не вызывала у испытуемых ни малейших сомнений. (...) Некоторые из них никак не могли поверить, что в действительности их рука поднята к голове, и с большим сомнением смотрели то на нее, то на место, где располагалась фантомно ощущаемая рука”[173].
Когда пациенты смотрели на больную руку и осознавали несоответствие ее положения положению фантомно ощущаемой руки, в большинстве случаев последняя быстро перемещалась в сторону реальной руки и сливалась с ней. Но когда пациенты вновь закрывали глаза, фантомно ощущаемая конечность вскоре возвращалась в прежнее положение. У некоторых пациентов при особенно интенсивной анестезии фантомно ощущаемая рука не сливалась с реальной даже после того, как они открывали глаза: “...фантомно ощущаемая рука возвращалась в прежнее положение, хотя испытуемым постоянно напоминали о том, что они должны постоянно смотреть на реальную руку и концентрировать на ней все свое внимание”[174].
Большинство пациентов, у которых после анестезии появлялось фантомное ощущение больной руки, обнаруживали, что могут свободно шевелить фантомной рукой — сгибать, вытягивать ее, двигать воображаемыми пальцами. После того как действие анестезии заканчивалось, фантомные ощущения ослабевали и к конечности возвращалась способность совершать реальные действия[175].
Фантомное ощущение руки можно экспериментально вызвать с помощью манжеты, которая используется в медицинских приборах для измерения кровяного давления и закрепляется на плече. В том случае если надутую манжету оставить на плече достаточно длительное время, рука теряет чувствительность. Если испытуемый не имеет возможности видеть эту руку, примерно через 30—40 минут большинство ощущает ее в другом положении по сравнению с положением реальной руки. Фантомно ощущаемая рука исчезает, как только снимается манжета и возвращается чувствительность реальной руки[176].
ОЖИВЛЕНИЕ ИСКУССТВЕННЫХ КОНЕЧНОСТЕЙ
Подобно тому как при тяжелом поражении нервных окончаний или при использовании анестезии происходит разделение и последующее слияние фантомно ощущаемых конечностей с реальными, может происходить и слияние фантомно ощущаемых конечностей с искусственными. Фантомные ощущения утраченных конечностей играют очень важную роль в процессе привыкания людей к механическим устройствам, заменяющим утраченные конечности, то есть к протезам.
Один исследователь так охарактеризовал их роль: “Фантомные ощущения играют ведущую роль при управлении протезом. Вначале ничем не связанные фантомная и искусственная конечности начинают двигаться вместе, достигая координации в пространстве, и безжизненный придаток оживляется фантомным ощущением утраченной конечности”[177]. По образному выражению другого исследователя, “фантомное ощущение обычно подходит к протезу, как рука — к перчатке”[178].
У тех пострадавших, кто не пользуется протезами, отмечается тенденция к ослаблению фантомных ощущений. В свою очередь, использование протезов противодействует этому процессу и даже может привести к нарастанию интенсивности прежде ослабевавших фантомных ощущений. Приведем пример из практики Вира Митчелла, хирурга времен Гражданской войны в США, который первым ввел в медицинскую литературу термин “фантомные ощущения”:
“Примерно в трети случаев ампутации ног и в половине случаев ампутации рук пациент утверждает, что ампутированная рука или нога ощущаются расположенными ближе к телу, чем сохранившаяся конечность. (...) Иногда они продолжают приближаться к туловищу до тех пор, пока не касаются культи или не занимают положение отсутствующей конечности, несмотря на то что лишены материальной оболочки. (...) Итак, можно предположить, что, если для улучшения двигательной способности заменить утерянную конечность на искусственный протез, который изначально не обладает чувствительностью, наше воображение рано или поздно отождествит утерянные руку или ногу с этим механическим устройством. Такие случаи описаны двумя наблюдательными и проницательными людьми, потерявшими ногу. Один из них, который в силу своей профессии ежегодно имеет дело с сотнями пострадавших, уверяет меня в том, что его личные ощущения являются общими для всех. Сам он лишился ноги в возрасте одиннадцати лет и помнит, что фантомно ощущаемая конечность постепенно удлинялась и в конце концов достигла колена. Когда он начал пользоваться протезом, рост фантомно ощущаемой ноги возобновился, и иногда она достигает нормальных размеров. В настоящее время он практически не вспоминает, что на самом деле у него сохранилась только часть ноги, — если только не заговорит на эту тему или не станет думать о культе и утраченной настоящей ноге”[179].
Люди, которые вместо ампутированной конечности носят протез, обычно снимают его перед сном, и тогда фантомные боли в несуществующих конечностях становятся очень сильными. Уильям Уорнер, американский ветеран, который потерял правую ногу выше колена во время боев в Италии в 1944 г., описывает эту ситуацию следующим образом:
“Иногда я с таким трудом переношу эти боли, что даже не могу спать. Я поговорил с несколькими докторами, но они не смогли мне помочь. Иногда ночью я встаю с постели, надеваю протез и хожу по дому. Это немного помогает унять боль. Но как только я снимаю протез, все начинается сначала”.
Похожий случай описал Оливер Сакс. Один пострадавший четко разделял свои фантомные ощущения на “хорошие”, которые оживляли его протез и помогали ходить, и “плохие”, которые по ночам после снятия протеза причиняли боль. Сакс так комментирует этот случай: “Идет ли речь об этом пациенте или о каком-то другом, разве не самое важное — убрать "плохие" (пассивные, патологические) фантомные ощущения, если они существуют, и сохранить при этом "хорошие" (...), то есть живые и активные?”[180]
ФАНТОМНЫЕ ОЩУЩЕНИЯ В ФОЛЬКЛОРЕ
Ампутация конечностей практикуется на протяжении тысячелетий. Отпечатки ладоней с ампутированными пальцами, сделанные около 36 тысяч лет назад, были найдены в пещерах на территории Франции и Испании. На территории Египта были обнаружены мумии с протезами рук[181]. С незапамятных времен люди теряли части тела в результате несчастных случаев или в сражениях. Кроме того, ампутации применялись в качестве наказания. В древнееврейском кодексе законов можно прочесть: “Око за око, зуб за зуб, рука за руку, нога за ногу”[182]. Ампутация практиковалась и в исламских странах как наказание за воровство: у вора отсекали правую руку. Таким образом, фантомные ощущения утраченных органов и фантомные боли в них ни в коем случае нельзя назвать новым явлением. Об этом феномене было известно с древнейших времен, и предания о нем передавались из поколения в поколение.
Чувствительность к перемене погоды, необыкновенно развитая у людей с ампутированными конечностями, вошла в легенду, а фольклорные предания подчеркивают и преувеличивают эти факты. “На перемену погоды указывают непроизвольные движения отсутствующих пальцев на руках и ногах, а многие такие люди безошибочно предсказывают восточный ветер”[183]. Относительно несложно было бы опытным путем проверить точность таких предсказаний погоды, а также выяснить, можно ли исчерпывающе объяснить это явление изменением температуры, влажности, атмосферного давления и других непосредственно измеряемых физических величин.
Другие особенности, упоминающиеся в фольклорных преданиях, труднее проверить, но от этого они не становятся менее впечатляющими. Во многих мифах встречается мотив, явно восходящий к единому древнему поверью. Отсеченные от тела части сохраняют с ним связь за счет какого-то неизвестного взаимодействия на расстоянии. Я впервые столкнулся с подобным поверьем, когда жил в Малайзии. Как-то раз, будучи в одной малайской деревушке, я принялся стричь ногти, а обрезки бросал в ближайшие кусты. Когда хозяева дома, где я остановился, увидели это, они пришли в ужас и объяснили мне, что недоброжелатели могут подобрать эти части моего тела и причинить мне вред с помощью колдовства. Мои хозяева очень удивились, что мне неизвестна такая элементарная вещь, как возможность причинить вред всему организму посредством определенных манипуляций с его частицей.
Впоследствии я узнал, что подобные поверья широко распространены и являются одним из основных принципов симпатической магии. Антрополог Джеймс Фрезер сформулировал этот принцип следующим образом: “...вещи, которые раз пришли во взаимодействие друг с другом, продолжают взаимодействовать на расстоянии после прекращения прямого контакта”[184]. Одна из самых загадочных сторон квантовой теории заключается в том, что принцип нелокальности — как он выражен в парадоксе Эйнштейна, Подольского и Розена и в теореме Белла — проявляется во многом так же, только применительно к физическим процессам на уровне субатомных частиц.
По поводу фантомно ощущаемых конечностей существует поверье, что дух потерянной конечности продолжает воздействовать на человека, которому она когда-то принадлежала. Читатели журнала “Ветеранз оф форин уорз” сообщили мне ряд историй, свидетельствующих, что это поверье существует до сих пор и имеет довольно широкое распространение. Уильям Креддок написал мне, как впервые услышал о нем от своего отца, который работал кочегаром в котельной и техником в больнице г. Джексонвилла (Иллинойс):
“В 40-е гг. по пути из школы домой я обычно останавливался в котельной. Однажды, когда я вошел, отец завернул в кусок материи что-то лежавшее на верстаке и попытался спрятать. Мне удалось заметить, что на тряпке были пятна крови, а когда я поинтересовался у отца, что это было, он ответил, что это меня не касается. Позднее он объяснил, что прятал ампутированную конечность, чтобы никто не смог использовать ее каким-то противоестественным образом. Еще он добавил, что знает человека, который очень страдал от болей в ампутированной руке, поэтому в конце концов эту руку решили выкопать и выпрямить на ней пальцы. Тогда боли прекратились”.
А вот рассказ о человеке, который хранил свой ампутированный палец в склянке:
“Несколько лет этот человек жил совершенно спокойно. Потом он вновь посетил врача, который некогда ампутировал палец, и пожаловался, что в отсутствующем пальце ощущается страшный холод. Врач поинтересовался, где хранится склянка с ампутированным пальцем. Пациент ответил, что склянка хранится там же, где всегда, — дома у его матери, в теплом подвале. Врач посоветовал ему навестить мать и все же проверить, как содержится склянка. Мать сперва отказывалась спускаться в подвал, но потом согласилась и обнаружила, что окно, в нескольких дюймах от которого находилась склянка с пальцем, оказалось разбитым. Как только склянку с пальцем согрели, фантомные боли в ампутированном пальце тут же прекратились”.
Американский психолог Уильям Джемс в 80-е гг. XIX в. провел опрос 200 человек, у которых были ампутированы конечности, и обнаружил, что подобные поверья имели “очень широкое распространение”[185]. Позднее некоторые психиатры попытались объяснить фантомные боли в ампутированных конечностях “фантазиями”, основанными на этих поверьях. В литературе описан случай, когда 14-летний мальчик мучительно страдал от жжения в ампутированной ноге. Его психиатр выяснил, что годом раньше один из учителей обсуждал в классе операции по ампутации конечностей, а попутно рассказал ученикам историю о человеке, страдавшем фантомным ощущением жжения в ампутированной ноге. По словам учителя, ногу эксгумировали, пытаясь определить источник боли, и обнаружили, что в ней поселились муравьи. Боли у пациента прекратились, как только ампутированную конечность очистили от муравьев и захоронили надлежащим образом. Под влиянием этой истории мальчик поверил в то, что причиной фантомного жжения может стать кремация ампутированной ноги[186].
Еще один случай из области психиатрии связан с молодой женщиной, которая в возрасте шестнадцати лет в результате автокатастрофы потеряла обе ноги. Позднее она стала страдать фантомными болями в ампутированных конечностях, и эти боли также напоминали сильное жжение. Под гипнозом пациентка вспомнила, как во время операции просила хирурга о том, чтобы ее ампутированные ноги не кремировали, а просто закопали: ей казалось, что так будет лучше. Но хирург не обратил внимания на ее просьбу. Так же под гипнозом психиатр внушил женщине, что, несмотря на кремацию ампутированных ног, в духовном смысле они все равно сохранились, хотя физически отсутствуют. “Она сообщила об улучшении своего самочувствия и, как мне кажется, поверила, что ампутированные ноги символически вернулись к ней”. Фантомные боли в утраченных конечностях у этой пациентки полностью прекратились[187]. Это один из тех редких случаев исцеления от фантомных болевых ощущений, которые мне удалось отыскать в медицинской литературе.
Похожие поверья и по сей день широко распространены в России и, вероятно, во многих других странах лира. Разумеется, Скептики решительно заявят, что все это — просто суеверия, не имеющие под собой никакой научной основы. Но почему Скептики так уверены в своей правоте, если в этой области до сих пор не проводилось никаких экспериментальных исследований? Не собираясь лично исследовать влияние утраченных частей тела на фантомные боли, я, однако, не считаю, что этот вопрос не заслуживает эмпирического изучения.
Провести соответствующие эксперименты не так сложно, если исследователь будет работать в сотрудничестве с пациентами и персоналом какой-нибудь больницы, где, как правило, все ампутированные части тела сжигают без согласования с пациентами. В ходе эксперимента ампутированные органы нужно случайным образом разделить на три группы. Ампутированные части тела из первой, самой многочисленной группы следует кремировать в обычном порядке, части тела из второй группы следует захоронить в естественном положении, и, наконец, части тела из третьей группы следует захоронить в деформированном виде. Эту работу следует проводить в режиме “двойного слепого контроля” — ни врачи, ни пациенты не должны знать, чьи именно органы были захоронены или кремированы. В дальнейшем потребуется периодически проводить опрос пациентов, расспрашивая их о характере фантомных ощущений, если таковые появятся. Если статистически значимые различия выявлены не будут, гипотезу Скептиков можно считать доказанной. Если же будут обнаружены различия в ощущениях тех, чьи ампутированные органы были кремированы, и тех, чьи утраченные органы были захоронены, или проявится зависимость характера фантомных ощущений от положения ампутированной части тела при захоронении, старинные фольклорные предания получат научное подтверждение. В этом случае нужно будет пересмотреть методы лечения больных с фантомными ощущениями боли в утраченных органах и в любом случае советоваться с больными по поводу того, как поступить с их ампутированными конечностями.
ФАНТОМНЫЕ ОЩУЩЕНИЯ В АМПУТИРОВАННЫХ КОНЕЧНОСТЯХ И ПЕРЕЖИВАНИЕ ВЫХОДА ИЗ ТЕЛЕСНОЙ ОБОЛОЧКИ
Как фантомные ощущения в утраченных органах соотносятся с ощущением выхода за пределы тела? Переживая выход из телесной оболочки, люди обнаруживают себя вне собственного физического тела, при этом предполагая или даже ясно ощущая, что нематериальное, фантомное тело остается при них[188]. К примеру, именно так запомнил свои ощущения человек, который после несчастного случая оказался на операционном столе под наркозом. Потеря сознания в результате наркоза оказалась кратковременной, а дальнейшее сам пациент описывает так:
“Я видел себя — вернее, свое физическое тело — лежащим в операционной. Свободно паря и глядя сверху вниз, я видел свое физическое тело, которое лежало на операционном столе, видел на нем рану с правой стороны, которой занимался хирург. Я даже мог разглядеть хирургические инструменты, многие из которых были мне неизвестны. Все это я видел очень ясно и подробно. Я не видел смысла в том, что делали врачи, и даже услышал свой голос, когда крикнул им: "Прекратите!"”[189].
Некоторые люди даже способны произвольно покидать свою физическую оболочку и перемещаться в пространстве. Когда подобный опыт заканчивается, они возвращаются в физическое тело, и фантомное тело вновь сливается с физическим. Один из специалистов по этой практике, Роберт Монро[190], в своем учебном центре в штате Виргиния (США) даже проводит семинары, помогая развить такую способность и обучая технике выхода за пределы физического тела. Вот как он описывает этот феномен:
“...внетелесное переживание (ВТП) представляет собой такое состояние, когда человек оказывается вне своего материального тела в полном сознании и сохраняет способность воспринимать и действовать так, как если бы оставался в физическом мире, — за несколькими исключениями. Он может перемещаться в пространстве (и времени?) — как медленно, так и со скоростью, явно превышающей скорость света. Он может наблюдать за происходящим вокруг, участвовать в различных событиях и принимать осознанные решения, основанные на том, что он видит и делает. Он способен проникать сквозь физическую материю: стены, стальные листы, бетон, землю, океанские воды, воздух. Он может без малейших усилий и всякого риска войти даже в атомный реактор. Такой человек способен оказаться в соседней комнате, не утруждая себя открыванием дверей. Он может навестить своего приятеля, живущего в трех сотнях миль, либо, если вздумается, исследовать Луну, Солнечную систему и всю галактику”[191].
Подобный опыт люди нередко переживают на пороге смерти. Вот как описывает свои ощущения 17-летний подросток, который чуть не утонул, купаясь в озере:
“То погружаясь под воду, то выныривая на поверхность, я вдруг почувствовал, что мое “я” вышло за пределы тела. Я был неподвижен и одновременно видел свое собственное тело, которое барахталось в воде в трех-четырех футах от меня, то выныривая, то с головой погружаясь под воду. Тело виделось мне со спины и немного справа. Даже тогда, когда я находился за пределами тела, у меня все-таки сохранялось ощущение некоей материальной оболочки. В то же время я чувствовал себя невесомым, легче перышка”[192].
Переживания такого рода известны практически во всех традиционных культурах. Да и в современном индустриальном обществе это явление не исчезло и встречается не так уж редко. Периодические опросы общественного мнения показывают, что, по различным данным, 10—20% опрошенных вспоминают по крайней мере один пережитый ими случай выхода за пределы телесной оболочки[193].
Подобное ощущение каждый из нас испытывает во сне: нам кажется, что мы отправляемся в дальнее путешествие, хотя физическое тело в это время лежит в постели. Во время сна у нас появляется второе тело — “тело сновидения”. Мы не можем ощущать его постоянно — точно так же, как не можем постоянно ощущать свое физическое тело, — но потенциально оно существует. Во сне мы занимаем определенное положение в пространстве, смотрим с определенной точки зрения, можем ориентироваться, двигаться, видеть, слышать, разговаривать. Иногда появляются особенно яркие физические ощущения — к примеру, когда во сне мы летаем или переживаем эротические сцены.
Некоторые люди видят так называемые “осознанные сновидения” — сны, в которых они понимают, что спят. В таких снах действует то же самое “тело сновидения”, но человек может выбирать, куда ему направиться, и способен до некоторой степени контролировать свои ощущения. Осознанные сновидения очень близки к переживанию выхода из физического тела. Разница лишь в том, что в первом случае человек покидает физическое тело в состоянии сна, а во втором — в состоянии бодрствования[194].
В эзотерической литературе путешествия в осознанных сновидениях и переживания выхода за пределы физического тела принято называть “астральными путешествиями”, а тело, которое при этом действует,— “астральным”, или “тонким” телом. Но эта терминология привычна лишь немногим, поэтому в дальнейшем я буду называть такое тело просто “нематериальным”.
Сходство между нематериальным телом и фантомно ощущаемыми конечностями просто поражает. Во-первых, нематериальное тело субъективно кажется вполне реальным — так же, как и фантомно ощущаемые конечности, — даже в том случае, если человек, переживающий внетелесный опыт, четко осознает, что находится вне своего физического тела. Во-вторых, нематериальное тело может отделяться от физического тела, а затем вновь сливаться с ним в одно целое. Точно так же при параличе и после анестезии нервных окончаний фантомно ощущаемые конечности могут разделяться с физическими, а затем вновь сливаться с ними. В-третьих, существуют промежуточные случаи — к примеру, в первые минуты после травмы позвоночника. “Сразу после несчастного случая фантомно ощущаемое тело может отделиться от физического тела. Например, человек может чувствовать, что его ноги подняты выше грудной клетки или даже выше головы, хотя видит, что на самом деле они вытянуты на дороге”[195].
Невропатолог Рональд Мелзак, много лет изучавший фантомные ощущения, пришел к следующему выводу: “Очевидно, что ощущение тела может сохраняться и тогда, когда физическое тело вообще отсутствует. Для того чтобы ощущать тело, не нужно самого тела”[196]. Но так ли это в действительности, могут сказать лишь те, кто сам пережил опыт выхода из тела.
ТЕОРИЯ ФАНТОМНЫХ ОЩУЩЕНИЙ
Что все это означает? Ответ прежде всего зависит от мировоззрения конкретного человека. Некоторые воспринимают нематериальное тело как проявление души. Обычно оно оживляет физическое тело, но способно и действовать самостоятельно. Фантомно ощущаемые конечности при этом тоже воспринимаются как проявления души. Они существуют в области психической, а не материальной реальности. Вероятно, такое понимание фантомных ощущений преобладает во всех традиционных культурах. Знаменитый адмирал Нельсон, в 1797 г. потеряв руку во время морского сражения, любил повторять, что для него фантомное ощущение утраченной руки стало лучшим доказательством существования души.
До сих пор такого понимания фантомных ощущений придерживаются большинство экстрасенсов. Многие из них утверждают, что способны видеть “ауру” утраченных органов[197]. В эзотерических кругах фантомно ощущаемые конечности считаются частью “тонкого”, “астрального”, или “эфирного” тела.
С точки зрения ограниченного разума, напротив, фантомные ощущения утраченных органов и нематериальное тело рассматриваются как иллюзии, которые создаются внутри нервной системы. Фантомные конечности располагаются не там, где ощущает их пациент, а внутри головного мозга. Для убежденного материалиста механистическая теория мозга не требует доказательств. Практическая медицина все еще остается под влиянием таких воззрений, и потому врачи в больницах внушают пациентам с ампутированными конечностями официальную точку зрения, согласно которой все процессы, вызывающие появление фантомных ощущений в утерянных конечностях, происходят в головном мозге.
Однако точная локализация фантомных ощущений точно не определена. Сначала была принята гипотеза, в соответствии с которой фантомное ощущение ампутированных конечностей и фантомные боли в них появляются за счет генерации нервных импульсов в культях — прежде всего в разрастающихся в месте ампутации нервных узлах, называемых невромами. Эти импульсы по позвоночному столбу попадают в кору головного мозга, где, как предполагалось, в сенсорно-моторной области генерируются ощущения, порождающие иллюзию отсутствующей конечности. Эта теория неоднократно проверялась, и в соответствии с ней предпринимались попытки ослабить фантомные боли в ампутированных конечностях путем хирургического рассечения нервных волокон, идущих от невром, — выше невром, в самих невромах или в области позвоночного столба. Хотя после операции наступало временное облегчение, позже вновь возникали фантомные ощущения, а боли возобновлялись. Более того, гипотеза, связывающая появление фантомных ощущений с культей, не может объяснить, почему пациенты с врожденным отсутствием конечностей также испытывают фантомные ощущения, хотя их нервные окончания никогда не были травмированы.
Следующая гипотеза переместила область, где зарождаются фантомные ощущения, с невромы в позвоночный столб. Предполагалось, что фантомные ощущения появляются вследствие чрезмерной активности тех нервных клеток внутри позвоночника, которые из-за ампутации конечностей утратили нормальную связь с телом. Чтобы исключить подобные эффекты, пытались перерезать различные нервные волокна внутри позвоночного столба, но фантомные ощущения — в том числе и боли — вскоре возвращались. Кроме того, в эту гипотезу не укладываются фантомные ощущения при параличе, когда позвоночник был травмирован гораздо выше отнявшихся конечностей — например, в области шеи. Некоторые такие пациенты ощущают мучительные фантомные боли в ногах и паху, хотя спинномозговые нервные клетки, посылающие в головной мозг соответствующие нервные импульсы, берут начало гораздо ниже места перелома. Таким образом, никакие нервные импульсы из этих клеток не могли бы пройти выше места перелома[198].
В соответствии со следующей гипотезой, источник фантомного ощущения ампутированных конечностей сдвинулся еще выше, в головной мозг. У некоторых пациентов были хирургически удалены те области таламуса и коры головного мозга, которые получают нервные импульсы от утраченной конечности. Но даже такие радикальные хирургические методы не могли избавить от фантомных болей. Несмотря на то что были иссечены соответствующие участки сенсорно-моторной области коры головного мозга, боль, как правило, возвращалась, и фантомные ощущения в ампутированной конечности сохранялись[199].
Современные версии той же гипотезы сдвигают зону зарождения фантомных ощущений еще глубже — в мозговую ткань. Одно из предположений состоит в том, что появление фантомных ощущений зависит от способа образования новых нервных связей в головном мозгу, по-новому выстраивающих “топографию” тех областей, которые ранее получали нервные импульсы от ампутированных органов[200]. Но на создание новых нервных связей требуются недели, а то и месяцы, в то время как фантомные ощущения могут появиться немедленно — как, например, это происходит при анестезии. Учитывая это несоответствие, другая подобная гипотеза провозглашает основной причиной фантомных ощущений быструю “актуализацию латентных цепей” в обширных областях головного мозга[201]. Следующая гипотеза состоит в том, что изображение тела генерируется в различных частях головного мозга сложной сетью нервов, которая называется нейроматрицей. Нейроматрица “генерирует образы, обрабатывает протекающую через нее информацию и в конце концов генерирует образ, который и воспринимается как целое тело”[202]. Эта нейроматрица напрямую соединена с различными органами. Хотя со временем она может изменяться, предполагается, что она существует с рождения, — таким образом учитывается и то обстоятельство, что люди, появившиеся на свет без какой-либо конечности, тоже могут страдать от фантомных ощущений отсутствующих конечностей. Упомянутая матрица занимает в головном мозге столько места, что ее выход из строя “означал бы разрушение всего головного мозга”[203].
На этой стадии теория появления фантомных ощущений за счет процессов, протекающих в головном мозге, становится практически неуязвимой. Если удаление любого отдельного участка головного мозга не помогает избавиться от фантомных ощущений, это всего лишь означает, что они генерируются другими областями. Можно бесконечно рассуждать о “параллельных”, “резервных” или “латентных” системах — точно так же, как до Коперника любое астрономическое явление, не укладывающееся в сложившуюся теорию, можно было объяснить, добавив к предполагаемым орбитам планет эпициклы. Неуязвимая теория привлекательна для фундаменталистов от науки, но для самой науки она вредна.
С целью выяснения природы фантомных ощущений в ампутированных конечностях проводились многочисленные медицинские исследования, призванные обосновать такие концепции, как “схема, обусловленная положением тела”, “схема тела” или “образ тела”. Эти термины были введены в начале XX в. как теоретическая основа для объяснения результатов клинических наблюдений, но значение терминологии так и осталось весьма неопределенным. При критическом анализе теории “схемы тела” два выдающихся немецких невропатолога пришли к следующему заключению:
“Единой и четко определенной теории "схемы тела" пока не существует. Идеи различных авторов сильно отличаются друг от друга, основываются на неодинаковых предпосылках и служат для объяснения совершенно разных клинических явлений. Более того, действительно оригинальные открытия в этой области весьма немногочисленны, да и они остаются непонятыми или понимаются превратно. (...) Как только была создана эта теория, множество различных патологий было отнесено на счет “нарушений в схеме тела”. Затем эти патологии использовались для доказательства верности всей теоретической концепции. Это классический случай использования аргумента, основанного на выводе из положения, которое само по себе требует доказательства. Одна гипотеза служит доказательством другой — и обратно. Экспериментальные исследования для объективной проверки теоретических предположений проводились чрезвычайно редко”[204].
Особая концепция “схемы тела” сложилась у фрейдистов. Эта схема существует в “сенсорно-церебральном пространстве-времени” и включает в себя “ментальную проекцию "эго"”[205]. Фантомные ощущения создаются подсознанием в результате “нарциссического желания сохранить целостность тела перед лицом реальной потери одного из органов или отвержения символической кастрации одного из органов тела”[206]. Такие теории лишь порождают все более и более громоздкую терминологию, но ни о природе “образа тела”, ни о сущности бессознательного не сообщают абсолютно ничего нового.
ФАНТОМНЫЕ ОЩУЩЕНИЯ И ПОЛЯ
Все общепринятые научные теории создаются на основе концепции ограниченного разума: “схемы тела”, образы тела, фантомные ощущения существуют исключительно внутри головного мозга, как бы живо и непосредственно мы их ни воспринимали. Однако если допустить, что разум может находиться как внутри, так и вне тела, необходимость ограничивать образ тела головным мозгом или даже нервной тканью отпадает. В частности, фантомное ощущение утраченной конечности может локализоваться не в головном мозге, а там, где оно непосредственно чувствуется, — за пределами культи, на месте отсутствующей конечности.
Концепция безграничного разума близка древней идее души, заполняющей и оживляющей тело. Мне представляется, что в наши дни более плодотворно интерпретировать эту идею с точки зрения полей. Тело самоорганизуется и заполняется полями. Морфогенетические поля — точно так же, как электромагнитное, гравитационное и квантовое, — определяют его развитие и поддерживают его форму. А поведенческое, ментальное и социальное поля определяют его поведение и умственную деятельность. В соответствии с гипотезой формообразующей причинности, морфогенетическое, поведенческое, ментальное и социальное поля — это разновидности единого морфического поля, в котором хранится как информация из прошлого отдельного индивида, так и коллективная память бесчисленного множества других людей, живших до него.
Поля фантомных ощущений я предпочитаю рассматривать именно как морфические поля, однако нам предстоит проверить гипотезу более общего плана. В настоящий момент я не буду останавливаться на природе и свойствах морфических полей, определяемых морфическим резонансом. Мы будем проверять саму идею поля, организующего образы в пространстве и времени. По моим предположениям, эти поля локализуются именно там, где располагаются фантомно ощущаемые ампутированные конечности. Они могут распространяться за пределы физического тела, создавая проекции утраченных конечностей за пределами культи.
ПРОСТОЙ ЭКСПЕРИМЕНТ ПО ВЫЯВЛЕНИЮ «КАСАНИЯ» ФАНТОМНОЙ КОНЕЧНОСТЬЮ
Эксперимент, который я предлагаю провести, аналогичен описанному в предыдущей главе, где речь шла о способности ощущать чужой взгляд. Точно так же, как человек может почувствовать определенное воздействие, когда его пристально разглядывают, он может ощутить, когда к нему “прикасаются” фантомной конечностью. Какова бы ни была природа поля, лежащего в основе формирования фантомно ощущаемых конечностей, “касание” должно осуществляться посредством этого поля, которое гипотетически может воздействовать на испытуемого.
Самая простая форма соответствующего эксперимента — следовать той же самой схеме, которая использовалась в опытах при исследовании ощущения пристального взгляда. Испытуемый сидит спиной к человеку с ампутированной рукой, способному ощущать фантомную конечность. Тот в случайной последовательности либо ничего не делает, либо похлопывает испытуемого по плечу фантомной рукой. О начале каждого опыта подается сигнал в виде щелчка, зуммера или любого другого механического сигнала. Затем испытуемый отвечает, ощущал ли он касание. Результат записывается, а испытуемому сообщают, правильным был его ответ или нет. Такая обратная связь дает испытуемым возможность выработать чувствительность к необычному ощущению прикосновения фантомной рукой — разумеется, в случае, если такое ощущение вообще будет возникать.
В исследовании может принять участие и инвалид с ампутированной ногой. В этом случае испытуемый должен будет попытаться почувствовать прикосновение фантомной ноги — своего рода фантомный “пинок”.
РЕЗУЛЬТАТЫ ПРЕДВАРИТЕЛЬНОГО ЭКСПЕРИМЕНТА
После того как в журнале “Буллетин оф инститьют оф ноуэтик сайенс” появилась моя статья на соответствующую тему, многие инвалиды с ампутированными конечностями стали присылать мне сообщения. Одно из них пришло из города Харлей (штат Нью-Йорк) от Казимира Бернарда. Этот человек потерял правую ногу ниже колена, когда в 1940 г. в составе союзных экспедиционных сил принимал участие в боевых действиях в Норвегии. После войны Бернард работал экспертом по производству электронного оборудования в корпорации IBM. Он заинтересовался физическими исследованиями по проблеме фантомных конечностей и стремился сам провести некоторые эксперименты, чтобы выяснить, действительно ли он может кого-либо коснуться фантомной ногой. По его мнению, такой эксперимент дал бы наилучшие результаты, если бы удалось найти испытуемых с особой чувствительностью.
Бернард обсудил этот вопрос с доктором Александром Имичем, пенсионером-химиком из Нью-Йорка, а тот, в свою очередь, связался с Инго Сванном, также проживавшим в Нью-Йорке. Сванн ранее уже принимал участие в длительной серии довольно успешных парапсихологических экспериментов, проводимых Стэнфордским научно-исследовательским институтом в Калифорнии. Бернард, Имич и Сванн вместе разработали и провели серию опытов, причем Сванн обычно выступал в роли испытуемого, а Имич — экспериментатора, но в некоторых опытах они менялись ролями. В ходе эксперимента испытуемый пытался почувствовать прикосновение фантомно ощущаемой ноги Бернарда. Эксперимент проводился в течение нескольких дней в марте — апреле 1992 г.
Совместная работа была описана Сванном под заголовком “Неофициальный отчет о предварительном эксперименте, исследующем ощущение касания фантомной конечностью”. Я благодарен Инго Сванну, Александру у и Казимиру Бернарду за разрешение процитировать этот отчет. Вот как Сванн описывает ход опытов:
“Г-н Казимир Бернард сидел в таком положении, что мог поднимать или опускать фантомно ощущаемую ногу. Испытуемый (Сванн) в капюшоне, закрывающем его голову и тело до плеч, сидел на стуле прямо перед господином Бернардом в таком положении, что мог свободно опустить правую руку вниз и сделать маховое движение назад и вперед непосредственно сквозь фантомную конечность, если бы она была в этот момент поднята вверх. Испытуемого просили сообщать, когда его рука коснется фантомной конечности. Доктор Имич молча указывал пальцем господину Бернарду, что именно он должен делать — опускать фантомно ощущаемую ногу или поднимать. Сигнал о начале опыта подавался с помощью звонка”.
Генератор случайных чисел не использовался: для сбора действий в каждом конкретном опыте экспериментатор сам составлял последовательность псевдослучайных чисел по ходу эксперимента. В конце опыта исследуемый сообщал, почувствовал он фантомную конечность в предполагаемом месте контакта или нет. Его ответы оценивались как правильные или неправильные. Кроме того, испытуемый в случае неуверенности мог отказаться отвечать. Сванн отказался отвечать в 17 случаях из 175, а Имич — в 11 случаях из 96 опытов. Если испытуемый давал правильный ответ, ему об этом сообщали. Таким образом, испытуемый мог совершенствовать свою способность ощущать контакт с фантомной ногой Бернарда непосредственно в ходе эксперимента. Далее приводятся суммарные результаты эксперимента в том виде, как они представлены в отчете Сванна:
“Сванн: из 158 ответов 89 были правильными (число правильных ответов при случайном угадывании — 79); Имич: из 84 ответов 46 были правильными (число правильных ответов при случайном угадывании — 42)”.
Сванн также изучал воздействие обучения на чувствительность испытуемого, которое часто проявлялось в ходе парапсихологических экспериментов, проводимых Стэнфордским научно-исследовательским институтом. В том, что парапсихологические навыки при обучении улучшаются точно так же, как и любые другие, нет ничего удивительного. Вот что пишет по этому поводу сам Сванн:
“Долгое время разрабатывая эксперименты в Стэнфордском научно-исследовательском институте, мне приходилось изучать и оценивать влияние целенаправленного обучения, которое могло способствовать дальнейшему развитию многих способностей. Было обнаружено, что процесс обучения парапсихологическим навыкам проходит через трудноуловимые, но предсказуемые этапы, которые, как мне кажется, наслаиваются друг на друга, если усиливаются определенными методами. Некоторые особенности целенаправленного обучения хорошо изучены в общих исследованиях процесса обучения, но есть и такие, которые специфичны для обучения именно парапсихологическим навыкам”.
Сванн построил график зависимости суммарного числа правильных ответов от количества опытов. На графике также изображалась линия, показывающая число правильных ответов, которые могли быть даны при случайном угадывании (ил. 11). Когда в роли испытуемого выступал Сванн, воздействие обучения начинало сказываться примерно после 133 опытов. В 25 последних опытах Сванн дал 22 правильных ответа, тогда как при случайном угадывании количество правильных ответов составило бы 12,5. (Я провел статистический анализ полного набора данных, взяв долю правильных ответов в каждой последовательной группе, содержащей по десять опытов, и проанализировав тенденцию методами линейной регрессии. У Сванна выявилась тенденция давать больше правильных ответов в конце испытаний, чем в начале. Другими словами, наблюдалось статистически значимое воздействие обучения с вероятностью р = 0,03.)
100 200
количество опытов
Ил. 11. Суммарное количество опытов, в которых Сванн правильно определял, был ли у него контакт с фантомно ощущаемой ногой Бернарда. Вплоть до 133-го опыта его результат примерно соответствовал случайному. Начиная с этого момента, показанного на рисунке стрелкой, — когда, по его словам, он научился лучше чувствовать контакт с фантомной ногой, — его показатели улучшились. Прямая линия показывает количество правильных ответов при случайном угадывании
Когда в роли испытуемого выступал Имич, его результаты также улучшались по ходу эксперимента, а воздействие обучения стало сказываться после 68-го опыта. Начиная с этого момента в оставшихся 17 опытах он дал 11 правильных ответов, тогда как при случайном угадывании число правильных ответов должно было составить 8,5.
Сванн подчеркивает: “Если оценивать средний результат всех опытов и на этом основании судить об итогах эксперимента, нельзя говорить о заметном успехе”. Но если мы будем оценивать воздействие обучения в процессе эксперимента, особенно со Сванном в роли испытуемого, анализ результатов “показывает, что каким-то навыкам можно научиться и это обучение постепенно усиливает способность определять, происходил ли контакт руки испытуемого с фантомной конечностью”. Когда начало сказываться влияние обучения, Сванн обнаружил, что прикосновение к фантомной конечности вызывает у него неприятное ощущение. До начала эксперимента он не знал, каким будет этот контакт, но после этого открытия Сванну стало гораздо легче точно фиксировать прикосновение своей руки к фантомной ноге, и его результаты сразу стали заметно улучшаться.
Разумеется, Скептики вполне справедливо поинтересуются, нет ли в данном случае более привычного объяснения такому заметному улучшению результатов по ходу эксперимента. Не могло ли случиться так, что испытуемый просто научился сопоставлять правильные ответы со звуками или какими-либо другими едва уловимыми сигналами, которые издавались экспериментатором или Бернардом в том или другом варианте опыта? Вот что по этому поводу говорит сам Сванн:
“Какие-либо зрительные сигналы были полностью исключены ввиду использования капюшона, но никаких надежных средств звукоизоляции не применялось. В том случае, если бы стул Бернарда скрипел, испытуемый мог бы давать правильный ответ, полагая, что скрип связан с движением конечности. Однако в комнате Имича было очень жарко, и поэтому окно все время оставалось открытым. В комнате постоянно слышался шум нью-йоркской улицы, который заглушал все шумы в комнате. Как мне кажется, эксперимент проводился в помещении, которое все-таки было достаточно надежно изолировано от любых возможных сигналов, поскольку в ином случае положительный результат был бы получен гораздо легче и намного быстрее”.
Но вероятность восприятия слабых сигналов нельзя исключить полностью — точно так же, как нельзя исключить возможность влияния на окончательные результаты того факта, что последовательность опытов задавалась экспериментатором, а не выбиралась случайным образом.
Сванн, Имич и Бернард разослали свой предварительный отчет нескольким исследователям в области парапсихологии и медицины, ожидая комментариев. По общему мнению, результаты получились интересные и обнадеживающие, однако дальнейшие эксперименты следовало бы проводить, задавая случайную последовательность каким-либо механическим способом. Необходимо также исключить сигналы, воспринимаемые органами чувств, в частности звуковые. Каким-то образом следует учитывать возможность телепатической связи, при которой испытуемый улавливает концентрацию внимания человека с отсутствующей конечностью именно на этой конечности, а также телепатических сигналов от самого экспериментатора. При наличии телепатической связи правильные ответы связаны с этими сигналами, а не с самим контактом с фантомной конечностью. Кроме того, некоторые исследователи указывают, что в использовании экспериментатора нет никакой необходимости. Человек с ампутированной конечностью мог бы сам использовать случайную последовательность — к примеру, если снабдить его карточками с соответствующими указаниями, расположенными в случайной последовательности. И результаты он мог бы записывать сам.
Я согласен с этими комментариями. Лично я считаю, что вероятность восприятия слабых сигналов будет исключена или по крайней мере сильно уменьшена, если эксперимент будет проводиться в двух соседних комнатах, разделенных стеной (желательно звуконепроницаемой). Если контакт с фантомно ощущаемой конечностью будет регистрироваться даже через стену, подавляющее большинство сигналов, воспринимаемых органами чувств, можно будет исключить.
Скептики всех мастей могли бы потом придумать дополнительные возражения. Вместо призрачных руки или ноги, проходящих сквозь стену и ощущаемых испытуемым, можно было бы дать более привычное физическое объяснение. Вот одна очевидная возможность: через стену могут проникать какие-то звуковые сигналы. Однако это можно проверить, попросив испытуемого вставить беруши. Если дело действительно в звуковых сигналах, беруши должны уменьшить или вообще исключить способность испытуемого чувствовать контакт с фантомной конечностью. Другое возможное объяснение состоит в том, что сигналы могут передаваться какими-то механическими колебаниями, которые воспринимаются всем телом, а не ухом. Это тоже можно проверить, если установить стул испытуемого на многослойный пенопласт или любую другую вибропоглощающую основу. Обоснованные скептические возражения можно было бы проверять одно за другим, пока испытуемые будут сохранять энтузиазм и достаточный интерес к исследованиям.
Для того чтобы проверить возможность телепатической связи, при которой испытуемый дает правильные ответы, реагируя на намерения инвалида, а не на сам контакт с его фантомной конечностью, можно включить в эксперимент еще одну процедуру. Можно проводить не два, а три вида опытов:
1. Контрольный: фантомно ощущаемая нога находится в состоянии покоя; человек с ампутированной конечностью думает о чем-то постороннем.
2. Человек с ампутированной конечностью вытягивает фантомную ногу.
3. Человек с ампутированной конечностью думает о своей фантомно ощущаемой ноге, но не вытягивает ее. При этом он должен хотеть, чтобы испытуемый ощутил контакт.
Такие эксперименты могут показать, действительно ли касание фантомно ощущаемой конечностью воспринимается лучше, чем мысль о ней и внушение предполагаемого контакта.
В своем первоначальном варианте эксперимента я рекомендовал испытуемому оставаться неподвижным и стараться реагировать на прикосновение фантомно ощущаемой конечности инвалида. Однако метод, использованный в эксперименте Бернарда—Имича— Сванна, предполагает определение контакта в активном режиме, и он может оказаться предпочтительным. Метод активных ощущений особенно уместен, если испытуемые обладают опытом в области мануальной терапии или в других видах нетрадиционной медицины. Такие люди могут оказаться более чувствительными к фантомным ощущениям. В настоящее время мануальную терапию практикуют тысячи медицинских сестер — в США она входит во многие программы их подготовки. В ответ на мою просьбу предоставить дополнительную информацию по данной теме доктор Барбара Джойс, руководитель программы подготовки медицинских сестер в колледже Нью-Рошелл (штат Нью-Йорк), написала мне о своем опыте работы с двумя женщинами, у которых были ампутированы ноги. Доктор Джойс пыталась уменьшить боль и чувство дискомфорта в фантомно ощущаемых конечностях пациенток.
“В обоих случаях пациентки сообщили, что мануальная терапия, применяемая в области отсутствующей конечности, уменьшает зуд и боль. В меньшей степени у одной из них и в большей — у другой мне удавалось "почувствовать" фантомную ногу, а когда я, основываясь на этом, сообщала о предполагаемом положении отсутствующей конечности, оно точно совпадало с тем, как ощущали положение своей отсутствующей ноги сами пациентки”.
Вероятно, не только опытные специалисты по мануальной терапии, но и обычные люди будут лучше чувствовать контакт с фантомно ощущаемыми конечностями, если будут пытаться “ощупать” их вместо того, чтобы пассивно ожидать прикосновения. Поэтому я предлагаю принять такой вариант проведения эксперимента, когда испытуемый сам ищет контакт с фантомно ощущаемой конечностью в заранее определенной области пространства, а потом сообщает, почувствовал его или нет. Предварительные опыты, в ходе которых испытуемый пытается определить, какие именно ощущения возникают в момент контакта лично у него, можно проводить, оставив испытуемого в одном помещении с человеком, у которого отсутствуют конечности, — как это и было в эксперименте Бернарда— Имича—Сванна. Затем, когда задача станет более привычной, опыты следует проводить в соседних комнатах, разделенных стеной, на которой должно быть обозначено место, через которое будет проходить фантомная конечность. В некоторых опытах фантомный образ будет там находиться, в других опытах его не будет, а в третьем варианте человек с фантомно ощущаемой конечностью будет только думать о ней, но не тянуться к испытуемому сквозь стену. Последовательность, в соответствии с которой будет выбираться тот или иной вариант опыта, должна определяться стандартной процедурой задания случайной последовательности. Затем испытуемый должен ответить, ощутил он контакт с фантомной конечностью или нет. В случае правильного ответа испытуемому должны об этом сообщать.
НЕКОТОРЫЕ ДОПОЛНИТЕЛЬНЫЕ ЭКСПЕРИМЕНТЫ
1. Если фантомная конечность действительно будет ощущаться испытуемым после прохождения через барьер, следует использовать барьеры, изготовленные из различных материалов. Сможет ли фантомный образ проходить сквозь металлические барьеры? Сможет ли он проходить сквозь намагниченные материалы? Сможет ли он преодолевать провода, по которым течет ток? И так далее.
2. Если фантомные образы ощущаются испытуемыми, возможно ли существование обратной связи? Сможет ли человек с ампутированными конечностями ощущать “прикосновение” испытуемого или прохождение его руки сквозь фантомную конечность? Такой эксперимент следует проводить со всеми ограничениями, о которых говорилось выше.
3. Могут ли животные ощущать контакт с фантомным образом? В предварительных неофициальных испытаниях инвалиды могли бы касаться своих домашних животных фантомно ощущаемыми конечностями. Например, если к спящим кошке, собаке или лошади прикоснуться фантомной рукой, пошевелятся они или нет?
В этой связи могу привести факт, о котором мне сообщил г-н Джордж Баркус из города Токкоа (Джорджия). Его четвероногий друг, комнатный песик, по его словам, “никогда не входит в область, где могла бы находиться моя ампутированная нога; кроме того, он отказывается ложиться в этом месте”.
Следовало бы также провести эксперименты с мелкими животными, особенно чувствительными к присутствию человека и проявляющими в этом случае беспокойство. К примеру, для подобного опыта хорошо подошли бы мышь или таракан. Если через барьер в клетку с этими животными просунуть фантомно ощущаемую руку, вызовет ли это какие-то признаки тревоги? Для тщательного наблюдения за поведением животных можно было бы воспользоваться видеокамерой.
4. Может ли фантомно ощущаемая конечность быть зафиксирована с помощью известных физических методов? Например, может ли фантомный образ оказывать влияние на показания физических приборов? Простейшим способом предварительных испытаний была бы попытка поместить фантомный образ внутрь радиоприемника, телевизора, компьютера или любого другого электронного бытового прибора. Вызовет ли это какие-либо заметные эффекты? Более точные испытания можно было бы провести, помещая фантомный образ внутрь или в непосредственной близости от магнитных и электрических измерительных приборов, счетчика Гейгера, масс-спектрометра, спектрометра для измерения ядерного магнитного резонанса, пузырьковой камеры, используемой для регистрации элементарных частиц, и т.д. Если фантомный образ способен оказывать какое-то воздействие на рабочие характеристики одного из перечисленных приборов, показания этого прибора при наличии и отсутствии фантомного образа должны различаться. Если такое различие будет обнаружено, появится возможность точных лабораторных исследований феномена фантомных конечностей.
5. Возможно ли обнаружение фантомного образа с помощью фотографии Кирлиан, то есть эффекта свечения живых тканей в электрическом поле? В этом методе фотографии используется переменный электрический ток с высоким напряжением, а само изображение формируется за счет электрических разрядов[207]. Такой метод популярен среди сторонников движения нью-эйдж: на фестивалях и выставках этого движения можно “сфотографировать ауру” своей руки. В стоимость такой фотографии обычно включается интерпретация вашего эмоционального состояния. В книгах и статьях об эффекте Кирлиан часто приводится фотография так называемого “фантомного листа”. После того как была удалена часть листа, на фотографии Кирлиан появилось “фантомное” изображение отсутствующей части (ил. 12). Результат впечатляет, и есть вероятность, что таким же образом можно сфотографировать фантомно ощущаемые конечности, пальцы и т.д.
Правда, при использовании этого метода могут возникнуть серьезные проблемы. Не исключено, что феномен “фантомного листа” — всего-навсего результат ошибки. Если оператор сначала кладет лист на фотопластинку, а затем отрезает какую-то его часть, на фотопластинке остается расплывчатое изображение отсутствующей части. Оно может проявиться из-за оставшейся на фотопластинке влаги[208]. “Ауру” на фотографиях Кирлиан имеют даже кусочки влажной фильтровальной бумаги. Если на фотопластинку до начала эксперимента положить фильтровальную бумагу, а затем отрезать от нее какую-то часть, на фотографии появится “фантомное” изображение отсутствующего куска.
Но хотя некоторые фотографии “фантомного листа” были получены именно таким образом, изображения фантомной части появляются и тогда, когда лист режется до того, как кладется на фотопластинку, — правда, не всегда. Данный эффект остается неоднозначным: одни исследователи могут получать подобные изображения весьма часто, а у других они выходят очень редко или не получаются вообще[209]. Уже было предпринято несколько попыток обнаружить этим методом фантомно ощущаемые конечности и пальцы, однако до сих пор ни одна из них не увенчалась успехом[210]. Но, хотя перспективы в этой области исследований не слишком обнадеживают, следовало бы предпринять еще несколько попыток.
5. Могут ли фантомно ощущаемые конечности оказывать влияние на проращивание семян или рост микроорганизмов? Фантомные образы можно помещать внутрь поддона с проращиваемыми семенами или внутрь чашки Петри с культурами бактерий. Будет ли развитие образцов после контакта с фантомным образом значительно отличаться от развития контрольных образцов? Будут ли мутации у бактерий после контакта с фантомно ощущаемой конечностью происходить иначе, чем у бактерий контрольной группы? Если так, то какое влияние окажет более частый или более длительный контакт по сравнению с контрольным однократным непродолжительным контактом? Возможны и другие варианты таких опытов.
Ил. 12. “Фантомный лист”. Верхняя часть листа была отрезана вдоль линии, показанной на рисунке стрелкой, а затем была сделана фотография по методу Кирлиан. На фотографии появилось неясное изображение отсутствующей части листа (Тельма Мосс. Фотография Кирлиан)
СВЯЗЬ РАЗУМА И ТЕЛА
Эти эксперименты должны прояснить вопрос о том, как связаны наши разум и тело. Выходит ли разум за пределы тела или он ограничивается головным мозгом? Ощущения говорят о том, что он занимает все тело. Например, если я чувствую боль в большом пальце ноги, я ощущаю ее именно там, а не в головном мозгу. Точно так же мое восприятие собственного тела в целом связано именно со всем телом, а не только с головой. Однако, согласно общепринятым воззрениям, все эти субъективные ощущения рождаются внутри головного мозга и являются одним из проявлений его жизнедеятельности. В нормальных условиях отделить ощущение конечности от самой физически существующей конечности весьма сложно. Такое разделение происходит после ампутации, после серьезного повреждения нервных окончаний или при некоторых видах анестезии. В этих случаях появляется возможность отделения фантомной конечности от физической. Каждый согласится, что фантомный образ существует в субъективной реальности. Но что это означает в действительности? Локализуется ли это ощущение только внутри головного мозга или оно связано с расширенными полями, которые заполняют все наше тело и продолжают существовать даже после удаления материальной структуры (как это происходит с магнитным полем вокруг магнита, не исчезающим и после того, как мы удалим железные опилки, позволяющие косвенно наблюдать его)?
Предложенные в этой главе исследования задуманы для того, чтобы выяснить, могут ли “субъективные” фантомные образы ампутированных конечностей оказывать “объективное” воздействие. Если это подтвердится, подобные фантомные образы следует рассматривать как нечто большее, чем отражение процессов, протекающих в головном мозгу. Это явление может быть связано с полями, локализованными именно там, где присутствуют фантомно ощущаемые конечности.
Следующим вопросом будет выяснение природы этих полей. Являются ли они частным видом одного из известных физических полей — таких, как электромагнитное или квантовое? Или же это ментальные поля? Или — морфические поля, обладающие собственной памятью? Или же — и то, и другое, и третье одновременно?
Но прежде всего надо ответить на главный вопрос, поставленный в этой главе. Могут ли фантомно ощущаемые конечности оказывать какое-то воздействие на окружающий мир? Пока это неизвестно.
Если люди действительно могут ощущать, что кто-то пристально их рассматривает, если фантомно ощущаемые ампутированные конечности действительно могут оказывать заметное воздействие, то основные положения теории ограниченного разума теряют под собой основу. Возможно, разум способен покидать нашу телесную оболочку, проецируясь далеко за пределы тела. Возможно, он наполняет все наше тело, в каком-то смысле оживляя его. Если бы мы смогли в этом убедиться, разум вышел бы из тесной черепной коробки, куда его заперли Декарт и его последователи.
Связь разума, тела и окружающего мира можно было бы увидеть в новом свете. Открылись бы новые обширные области медицинских, психологических и философских исследований. Парапсихология, ныне не признаваемая наукой, нашла бы свое место в ряду научных дисциплин. Фольклорные предания стали бы источником научных знаний. Начало бы складываться новое понимание души. Существующая ныне граница между духом и материей, разумом и телом, субъективным и объективным постепенно стала бы стираться.
С другой стороны, предлагаемые эксперименты могут дать и отрицательный результат. Они могут не подтвердить существования новых видов связей, неизвестных современной физике. Позиция Скептиков может упрочиться, и тогда они, столь убежденные в важности эмпирических исследований, должны будут встретить эти попытки с одобрением.
НАУЧНЫЕ ИЛЛЮЗИИ
ИЛЛЮЗИИ ОБЪЕКТИВНОСТИ
ПАРАДИГМЫ И ПРЕДУБЕЖДЕНИЯ
Многие из тех, кто не занимается наукой непосредственно, благоговеют перед ней и приписывают ей огромную силу и четкую определенность. В частности, это касается и студентов. Им кажется, что в учебниках содержатся исключительно бесспорные цифры и факты, а наука абсолютно объективна. В современном обществе это не вызывает никаких сомнений. Наука является мировоззренческой основой для материалистов, рационалистов, светских гуманистов — для всех, кто утверждает приоритет науки над религией, древней мудростью и всеми видами искусств.
Сами ученые редко отзываются о науке в таком ключе. Это стереотипное отношение считается само собой разумеющимся и не требующим доказательств. Лишь немногие ученые проявляют особый интерес к философии, истории или социологии науки, и в учебниках по отдельным научным дисциплинам этим вопросам почти не отводится места. В большинстве своем исследователи попросту предполагают, что под «научным методом» подразумевается метод экспериментальной проверки любой теории, при котором собственные ожидания, идеи и воззрения экспериментатора не влияют на окончательный вывод. Ученые привыкли считать себя смелыми и бескомпромиссными искателями истины.
В наше время такая самооценка может показаться или самообманом, или откровенным цинизмом. Тем не менее я считаю, что сама идея научной объективности не может не вызывать уважения. До тех пор пока исследователь воодушевляется героическим стремлением к истине, его усилия можно только приветствовать. Тем не менее в реальной жизни подавляющее большинство современных ученых обслуживают военные и коммерческие интересы[211], и почти каждый из них стремится сделать карьеру в каких-либо научных или профессиональных организациях. Страх испортить карьеру, не быть напечатанным в популярном журнале, лишиться финансирования, а тем более быть уволенным сильнейшим образом воздействует на тех, кто пытается слишком далеко отойти от современных академических воззрений и как минимум удерживает их от публичных выступлений. Многие вообще не решаются высказывать собственное мнение — по крайней мере, до тех пор, пока не выйдут на пенсию, не получат Нобелевскую премию или не добьются и того и другого одновременно.
Есть и более серьезные причины поставить под сомнение объективность ученых, — причины, о которых нам напоминают специалисты по философии, истории и социологии науки. Ученые входят в определенные социальные, экономические и политические системы. Они учреждают профессиональные объединения с определенной процедурой принятия новых членов, определенной идеологией, которой должен следовать каждый член группы под давлением остальных, определенными рычагами давления и поощрения. Такие объединения обычно работают на основе принятой в них системы воззрений или модели мира. Даже в пределах ограничений, заданных господствующей системой научных взглядов, научный поиск направлен не на бесспорные факты, а на построение тех или иных гипотез относительно окружающего мира и дальнейшие попытки проверить эти гипотезы экспериментально. Нередко к эксперименту побуждает желание поддержать привлекательные гипотезы или опровергнуть гипотезу оппонента. Предмет исследования и даже его результаты определяются влиянием осознанных или неосознанных ожиданий самих ученых. Кроме того, критики-феминистки обнаруживают явное и часто неосознанное предпочтение, отдаваемое мужчинам, — как в теоретических, так и экспериментальных областях науки[212].
Ученые-практики — врачи, психологи, антропологи, социологи, историки и преподаватели различных дисциплин — в большинстве своем хорошо осознают, что беспристрастная объективность является скорее идеалом, чем достижимым на практике качеством. Неофициально многие из них могут подтвердить, что если не они сами, то большинство их коллег по ходу исследований испытывают влияние личных амбиций, предвзятых мнений, предрассудков и других источников пристрастного отношения к предмету.
У исследователей глубоко укоренилась тенденция находить именно то, что они ищут. Это вытекает из самой природы человеческого внимания. Способность сфокусировать все чувства в соответствии с намерениями — фундаментальное свойство живых существ. Нахождение именно того, на что направлен поиск, — неотъемлемая часть повседневной человеческой жизни. Как правило, люди четко осознают, что отношения между ними во многом определяют и отношение к окружающему миру. Нас ничуть не удивляет пристрастность в политике или тот факт, что люди разных культур по-разному смотрят на одни и те же вещи. Мы не удивляемся, когда сталкиваемся со множеством повседневных примеров самолюбия и амбициозности у наших ближайших родственников, друзей и коллег. Но при этом предполагается, что «научный метод» должен быть выше культурных и личных пристрастий, опираться исключительно на объективные факты и общие принципы.
Пристрастия в науке легче всего распознать в том случае, когда они отражают политические предубеждения: известно, что люди противоположных политических взглядов всегда готовы оспорить любые утверждения своих политических противников. Например, ученые консервативных убеждений склонны находить биологические основания, доказывающие превосходство господствующих классов и рас и объяснять это превосходство законами природы. Напротив, ученые либеральных и социалистических убеждений предпочитают те же самые факты объяснять определяющим влиянием среды, рассматривая неравенство с точки зрения несовершенства социальной и экономической систем.
В XIX в. дискуссия о врожденных и привитых навыках поведения сфокусировалась на измерении объема головного мозга, а в XX в. — на измерениях IQ (коэффициента интеллектуального развития). Выдающиеся ученые, заранее убежденные в естественном превосходстве мужчин над женщинами или представителей белой расы над темнокожими, находили именно то, что предполагали найти. Например, Поль Брока (анатом, в честь которого был назван речевой центр головного мозга) пришел к заключению, что «в целом объем мозга у людей зрелого возраста больше, чем у пожилых, у мужчин — больше, чем у женщин, у людей с выдающимися способностями — больше, чем у людей посредственных, у людей высших рас — больше, чем у представителей низших рас»[213]. Чтобы сохранить свои убеждения, ему пришлось игнорировать немало совершенно очевидных и бесспорных фактов. К примеру, пять знаменитых профессоров Геттингенского университета дали свое согласие на то, чтобы после смерти был взвешен их головной мозг. Когда оказалось, что вес головного мозга практически каждого из этих знаменитостей весьма близок к весу головного мозга обычного человека со средними способностями, Брока заявил, что, по всей видимости, интеллект профессоров сильно преувеличивался!
Критики с эгалитарными политическими убеждениями сумели доказать, что обобщения, основанные на разнице в размерах головного мозга или величине коэффициента интеллектуального развития, были построены при систематическом искажении результатов и специальном подборе данных. Иногда и сами данные были весьма сомнительны — к примеру, в некоторых публикациях сэра Сирила Берта, отстаивавшего теорию умственных способностей как врожденного качества. В книге «Ошибки измерения человеческих способностей» Стивен Джей Гулд прослеживает печальную историю этих «объективных» исследований уровня интеллектуального развития с заранее предсказуемым результатом и показывает, как под предрассудки подводилась псевдонаучная база. «Полагаю, я убедительно продемонстрировал, что, если количественные результаты во многом определяются культурными ограничениями — как это происходит и во всех других областях науки, — их ни в коем случае нельзя считать истиной в последней инстанции»[214].
ОБМАН ОБЩЕСТВЕННОСТИ
Постоянным и весьма распространенным источником иллюзии объективности является сам стиль научных отчетов. Этот стиль создает картину некоего идеального мира, в котором наука предстает как чисто интеллектуальное упражнение, свободное от всех человеческих страстей. «Были проведены наблюдения...», «Было обнаружено, что...», «Результаты показали...» и т.д. Таким литературным оборотам до сих пор обучают подающих надежды школьников и студентов.
Ученые публикуют результаты своих исследований в статьях, которые в специализированных журналах принято называть научными. В знаменитом эссе «Является ли научная статья мошенничеством?» английский иммунолог Питер Брайан Медавар указывает, что стандартная структура этих статей создает «как правило, совершенно превратную картину того, как ученые приходят к своим открытиям». Типичная статья по биологии начинается с краткого введения, которое включает в себя обзор уже существующих работ по данной теме, затем идет раздел «Материалы и методы», далее раздел «Результаты», а завершает статью раздел «Обсуждение».
«Раздел под названием "Результаты" представляет собой поток фактографической информации, и обсуждать в нем значение результатов, которые вы получили, считается чрезвычайно дурным тоном. Вы должны сделать вид, что ваш девственно чистый разум — лишь вместилище для информации, которая поступает из внешнего мира, независимо от тех причин, которые вы сами открыли. Все оценки научных доказательств вы приберегаете для раздела "Обсуждение", где абсурдным образом начинаете сами с собой спорить о ценности тех сведений, которые сами же и получили в ходе исследований»[215].
Разумеется, та гипотеза, для проверки которой был запланирован эксперимент, все равно окажется на первом, а не на последнем месте. С тех пор как Медавар написал свое эссе, ученые стали более внимательно относиться к последовательности изложения материала в своих статьях, и теперь гипотеза все чаще и чаще излагается все же в разделе «Введение». Но в целом правила остались теми же: невыразительный текст, использование безличных конструкций и претензия на то, что приводятся только объективные факты. Ученые, которые активно занимаются научными исследованиями, хорошо понимают, что подобный стиль — не более чем прикрытие для ложных выводов, но в настоящее время он стал обязательным для каждого, кто хочет выглядеть объективным. К тому же этот стиль приветствуется технократами и бюрократами.
ОБМАН И САМООБМАН
Страшнее всего, когда жертвы иллюзии объективности считают, будто свободны от нее. В экспериментальных областях науки с самого начала наряду с естественной гордостью ученого присутствовала и тенденция к самоуверенности:
«Еще Галилей поддался соблазну выдвинуть свои идеи на первое место в науке — что по-видимому, и заставило его сообщать об экспериментах, которые просто невозможно было провести именно так, как он их описывал. Таким образом, неоднозначное отношение к экспериментальным данным присутствовало в западной науке с самого начала. С одной стороны, экспериментальные результаты считались окончательным критерием истины, а с другой — факты при необходимости должны были подчиняться теории и даже могли искажаться в ее интересах»[216].
Похожий недостаток был свойственен и другим великим ученым, и не в последнюю очередь — Исааку Ньютону. Он буквально подавлял своих критиков такой точностью результатов, которая не оставляла места для споров. Биограф Ньютона Ричард Уэстфол на основании документов описал, как Ньютон подгонял свои вычисления скорости звука и точного времени солнцестояния, как изменял корреляцию переменной в своей теории гравитации таким образом, чтобы добиться точности, превышающей 0,001.
«Убедительность его "Начал" в немалой степени объяснялась сознательной претензией на точность измерений, которая значительно превышала возможную в те времена. Если "Начала" служат основой количественных измерений в современной науке, это заставляет предположить крайне низкий уровень достоверности ее результатов: никто не смог бы так эффективно манипулировать результатами, как этот великий математик»[217].
Самый, пожалуй, распространенный вид обмана (и самообмана) — пристрастный отбор экспериментальных результатов. К примеру, с 1910 по 1913 гг. американский физик Роберт Милликен дискутировал со своим австрийским оппонентом Феликсом Эренфельдом по поводу величины заряда электрона. Предварительно полученные данные Милликена и Эренфельда сильно отличались друг от друга. У того и другого идея эксперимента заключалась в том, что капли масла вносили в электрическое поле, а затем измеряли минимальную силу поля, при которой эти капли оставались во взвешенном состоянии. На основании полученных им данных Эренфельд утверждал, что существуют субэлектронные частицы, заряд которых составляет определенную долю заряда электрона. Милликен был уверен в том, что заряд был единичным. Чтобы опровергнуть выводы своего оппонента, Милликен опубликовал статью с новыми сверхточными результатами, которые свидетельствовали в пользу его собственных предположений. Как бы между прочим в статье сообщалось, что «это не выборочные результаты по отдельной группе капель, а результаты по всем каплям за время эксперимента, который продолжался в течение шестидесяти дней»[218].
Один ученый, специализирующийся на истории науки, недавно изучил лабораторные журналы Милликена. В результате открылась совершенно иная картина. Каждый из предварительных результатов был снабжен такими комментариями, как «очень низкий, что-то не так» или «прекрасно, опубликовать»[219]. Оказалось, что из 140 полученных результатов в опубликованной статье были приведены только 58. В то же время Эренфельд опубликовал все полученные данные, которые показали гораздо больший разброс, чем результаты Милликена. На данные Эренфельда не обратили внимания, а Милликен получил Нобелевскую премию.
Вне всякого сомнения, Милликен был убежден в том, что он прав, и не хотел, чтобы его теоретические умозаключения были поставлены под сомнение из-за неупорядоченных результатов. То же, по-видимому, можно сказать и о Грегоре Менделе: с точки зрения современного статистического анализа результаты его знаменитых экспериментов с горохом слишком хороши, чтобы быть достоверными.
Можно с полной уверенностью утверждать, что тенденция публиковать только «лучшие» результаты и корректировать получаемые в процессе эксперимента данные существует не только среди ученых первой величины. Практически в любой области науки убедительные результаты способствуют карьере ученого, который их получил. В условиях строгой научной иерархии и жесткой конкуренции широко практикуются различные формы «улучшения» получаемых результатов, которые не сводятся к одному только исключению данных, не вписывающихся в заранее определенные схемы. Такая практика в научных кругах считается нормой. Кроме того, многие журналы отказываются публиковать результаты проблемных экспериментов, а также данные тех экспериментов, отрицательные результаты которых опровергают общепринятые положения.
Я не знаю ни одного официального исследования, в котором уточнялась бы доля экспериментальных данных, попадающих в печать. В тех областях, в которых лично я разбираюсь достаточно хорошо, — в биохимии, биологии развития, физиологии растений и земледелии, — по моим оценкам, для публикации отбирается только от 5 до 20% опытных данных. От своих коллег, занятых в других областях исследований (таких, как экспериментальная психология, химия, радиоастрономия и медицина), я узнал, что и там дело обстоит примерно так же. Когда подавляющее большинство данных — 90% и более — отвергается в процессе отбора, который производит какой-то один конкретный человек, то здесь открывается немалый простор для личных пристрастий и теоретических предубеждений, проявляющихся как сознательно, так и неосознанно.
В контексте выборочной публикации экспериментальных результатов проблема обмана и самообмана в науке приобретает первостепенную важность. Ученые, как правило, считают лабораторные журналы и компьютерные базы данных своей личной собственностью и нередко всячески затрудняют своим критикам и оппонентам доступ к этим материалам. Теоретически предполагается, что каждый исследователь (в разумных пределах) готов поделиться своими экспериментальными данными с коллегой, пожелавшим с ними ознакомиться. Но на основании собственного опыта я могу утверждать, что теория в этом вопросе весьма далека от практики. Несколько раз я просил у своих коллег разрешения ознакомиться с их исходными экспериментальными данными, и всегда мне отказывали. Вполне возможно, что недоверие относилось лично ко мне и не является в науке общепринятой нормой. Тем не менее результаты одного из крайне немногочисленных систематических исследований, посвященных принципу открытости научной работы, ставят соблюдение этого принципа под сомнение. Схема эксперимента была предельно простой. Психолог из университета штата Айова, занимавшийся этим исследованием, обратился к 37 авторам статей, опубликованных в различных психологических журналах, и попросил прислать исходные экспериментальные данные, на которых основывались публикации. Пять авторов вообще не ответили, от 21 пришли сообщения, что данные, к сожалению, были утеряны или случайно уничтожены, два автора предложили данные с очень существенными ограничениями. Только девять авторов прислали свои исходные данные, но при внимательном рассмотрении выяснилось, что более половины из них содержали значительные неточности даже в статистической обработке[220].
Вполне возможно, что ученым, отказывающимся представить свои исходные данные для более тщательного анализа, на самом деле нечего скрывать. Они могут счесть, что предварительные данные слишком необычны и труднообъяснимы для других ученых, или же предположить не совсем благовидные причины, стоящие за этим запросом. В конце концов, они могут быть задеты, усмотрев в этой просьбе скрытое подозрение в нечестности. Проблема поставлена не затем, чтобы обвинить ученых в преднамеренном мошенничестве или обмане. Напротив, ученые в подавляющем своем большинстве не менее честны, чем представители других профессий — к примеру, юристы, священники, банкиры или администраторы. Но ученые претендуют на особую объективность и в то же время принадлежат к той социальной группе, где принято предавать гласности только тщательно отобранные результаты. Такие условия весьма благоприятны для умышленного обмана, но самой серьезной угрозой идеалу объективности я считаю не обман как таковой. Намного опаснее самообман — в особенности самообман коллективный, поощряемый ложными представлениями о природе объективной реальности, доминирующими в академической среде.
Многие ученые осознают, что принять желаемое за действительное легко, но применяют это правило преимущественно к нетрадиционным областям исследований — к примеру, парапсихологии, рассматривая ее результаты как самообман или даже как умышленное мошенничество со стороны исследователей паранормальных явлений. Бесспорно, некоторые из тех, кто сомневается в ортодоксальных идеях, могут обманывать самих себя. Но тем не менее следует помнить, что такие исследователи не представляют опасности для науки, поскольку их результаты либо полностью игнорируются, либо подвергаются чрезвычайно тщательному анализу. Организованные группы Скептиков — вроде Комитета по научному расследованию заявлений о паранормальных явлениях — всегда готовы подвергнуть сомнению любые результаты, которые не соответствуют механистическому мировоззрению, и стремятся по возможности их дискредитировать. Парапсихологи давно учитывают недоверчивое отношение к получаемым ими результатам и сами весьма внимательно относятся к различным заблуждениям испытуемых и другим источникам пристрастного истолкования экспериментальных данных. Но результаты, получаемые в академических областях науки, не подвергаются столь пристальному критическому изучению.
ОБЗОР МАТЕРИАЛОВ ПО АНАЛОГИЧНЫМ ТЕМАМ, ПРОВЕРКА В ПОВТОРНОМ ЭКСПЕРИМЕНТЕ И ПОДТАСОВКА
Такие ученые, как врачи, юристы и представители некоторых других профессий, как правило, противодействуют вмешательству в их деятельность со стороны всевозможных организаций. Все они гордятся своей собственной системой контроля, которая обычно включает в себя три уровня:
1. Заявления о приеме на работу и получении субсидий из различных фондов рассматриваются после обзора материалов по аналогичным темам — для уверенности в том, что проекты заявителей встретят одобрение со стороны признанных авторитетов в данной области.
2. Статьи, присылаемые в различные научные журналы, направляются на тщательную критическую проверку известным специалистам в конкретной области науки, имена которых, как правило, не сообщаются авторам докладов.
3. Все опубликованные результаты в принципе могут быть проверены в ходе повторного эксперимента, проведенного независимыми учеными той же специальности.
Обзор материалов по сходным темам и критическая оценка результатов действительно весьма важны для проверки качества полученных результатов и, вне всякого сомнения, очень эффективны, но эти процедуры могут содержать в себе и элементы предвзятого отношения. Результат во многом зависит от пристрастий ведущих ученых и специалистов тех институтов, куда результаты направляются для критической оценки. Что касается проверки полученных результатов в независимом повторном эксперименте, то по крайней мере по четырем причинам это происходит крайне редко. Во-первых, на практике чрезвычайно сложно и не всегда возможно в точности повторить какой-либо эксперимент, так как приводимые схемы либо неполны, либо вообще не содержат сообщений обо всех произведенных операциях. Во-вторых, лишь немногие исследователи в достаточной мере располагают временем и средствами для повторения чужой работы — особенно в тех случаях, когда проверяемый эксперимент был проведен в хорошо финансируемой лаборатории с использованием дорогостоящего оборудования. В-третьих, у ученых нет серьезных стимулов проверять результаты других исследователей. В-четвертых, даже если подобная проверка будет выполнена, ее результаты окажется не так просто опубликовать, поскольку все научные журналы отдают предпочтение новым исследованиям и экспериментам. Как правило, повторные эксперименты проводятся только в особых случаях — например, если получены результаты особой важности или есть серьезные подозрения в подтасовке данных.
В сложившейся ситуации подтасованные результаты вполне могут быть приняты как истинные, особенно если они укладываются в рамки какой-либо господствующей теории.
«Признание подтасованных результатов является оборотной стороной тенденции отвергать новые идеи. Подтасованные результаты будут с большой вероятностью признаны официальной наукой, если они публикуются достаточно правдоподобным образом, подтверждаются широко укоренившимися предубеждениями, укладываются в рамки господствующей теории и представлены высококвалифицированным ученым, работающим в элитном научном учреждении. Если же новые научные идеи выдвинуты исследователями, которые не могут обеспечить наличие всех перечисленных условий, такие идеи будут восприняты с крайней настороженностью. Несмотря на то что единственными критериями научного признания результатов считаются логичность и объективность, в науке преобладают и нередко пользуются успехом именно подтасованные данные. (...) Что касается идеологов науки, то для них любой факт недобросовестности является табу, скандалом, значимость которого в каждом конкретном случае должна быть ритуально отвергнута. Те, для кого наука остается способом познания действительности, с горечью убеждаются, что пустая риторика оказывается движущей силой науки ничуть не реже, чем здравый смысл»[221].
Одна из немногих областей науки, где внешний контроль присутствует хотя бы отчасти, — система проверки качества новых видов продуктов питания, лекарственных препаратов и пестицидов. Предприятия США ежегодно представляют тысячи результатов тестирования на рассмотрение Администрации по контролю за продуктами питания и лекарствами и Агентству по охране окружающей среды. Эти учреждения имеют право послать своих инспекторов в любую лабораторию, предоставившую результаты тестов. В ходе таких инспекций постоянно выявляются факты фальсификации[222].
В большинстве областей науки случаи подтасовки, не связанные с откровенным криминалом, редко доводятся до сведения общественности, даже если их удалось выявить при анализе результатов аналогичных исследований, в ссылках на близкие по теме научные статьи или после проверки подозрительных данных в независимом повторном эксперименте. Даже в том случае, когда истинность проверяемых результатов не подтверждается в ходе повторного эксперимента, это принято объяснять тем, что условия предыдущего эксперимента были воспроизведены недостаточно точно. Кроме того, существует непреодолимый психологический и культурный барьер, не позволяющий выдвинуть против своих коллег обвинение в мошенничестве, — по крайней мере, если ни у кого нет личных, достаточно обоснованных причин усомниться в их честности. Как правило, о подтасовке результатов становится известно в результате доноса со стороны коллег или конкурентов, и нередко информатора побуждает к доносу личная обида[223]. В случае скандала большинство руководителей лабораторий и других ответственных лиц стараются замять дело. Если обвинения в фальсификации оказываются очень серьезными, если заявления выдвигаются достаточно настойчиво, а предъявленные доказательства оказываются неопровержимыми, проводится официальное расследование. Кого-то признают виновным и с позором увольняют с занимаемой должности.
Многие профессиональные ученые не допускают возможности, что подобного рода инциденты способны породить сомнения в объективности всей науки. Случаи подтасовки принято рассматривать как частную проблему, связанную с личными качествами «проштрафившегося» ученого, или объяснять инцидент обнаруженными у фальсификатора психическими отклонениями. Чтобы очистить науку, достаточно изгнать из нее отдельных недобросовестных ученых, которые выступают в роли козлов отпущения в буквальном, библейском смысле. Как известно, в День искупления первосвященник признавал грехи народа, возложив руки на козла, после чего козел изгонялся прочь и уносил с собой все грехи общины[224].
Как правило, ученые крайне озабочены своей репутацией, и не только по личным и профессиональным причинам, но и потому, что репутация ученого напрямую связывается с репутацией науки как таковой. Многие ставят науку выше религиозных убеждений, и для таких людей совершенно необходимо сохранить веру в ее непогрешимость и объективность. Подобно тому как наука замещает религию в качестве источника веры и непреходящих ценностей, так и сами ученые превращаются в особую касту священнослужителей. Точно так же, как от священнослужителей, общество ожидает от ученых соответствия провозглашаемым им идеалам — то есть объективности, рациональности и стремления к истине. «Некоторые ученые ведут себя на публике так, будто призваны служить символом разума, несущим спасение неразумной пастве»[225]. При этом никто из них по доброй воле не признает фундаментальных недостатков ни в своих убеждениях, ни в тех учреждениях, которые узаконивают их статус. Легче считать, что существуют частные проблемы, от которых можно избавиться, изгнав виновных из научной среды. Намного труднее подвергнуть сомнению свои убеждения и идеалы, на которых основана вся система.
Философы науки склонны идеализировать экспериментальный метод. Точно так же поступают и сами ученые. Уильям Брод и Николас Уэйд провели исследование, призванное уточнить, что в действительности происходит в лабораториях и насколько практика отличается от того, что сообщается публично. Они обнаружили, что реальность весьма прозаична: в научной ра боте присутствует немалый элемент шарлатанства. Проводится значительно больше опытов и допускается намного больше ошибок, чем можно предположить по официальным отчетам:
«Исследователи, конкурирующие в отдельно взятой области исследований, перебирают множество различных подходов, но в любой момент готовы переключиться на тот метод, который дает наилучшие результаты. Поскольку наука — процесс социальный, каждый ученый пытается не только продвинуться в своих исследованиях, но и заслужить одобрение собственных методик и собственной интерпретации в данной области. (...) Наука — сложный процесс, в котором наблюдатель при желании может практически ничего не увидеть, если в достаточной мере сузит поле зрения. (...) Ученые — живые люди, у каждого свой стиль и свой подход к истине. Единый стиль, в котором пишутся все научные статьи и отчеты, кажется естественным следствием универсального научного метода, но на деле он всего лишь отражает мнимое единодушие, укоренившееся на почве условного соглашения о форме научных сообщений. Если бы ученым при описании собственных теорий и экспериментов было дозволено выражаться естественным языком, миф об универсальном научном методе, скорее всего, рассыпался бы в одно мгновение»[226].
Я согласен с этим анализом. Своей книгой я хочу поддержать идею более демократичных и многообразных по форме научных исследований, не скованных теми «условными соглашениями», которые навязаны практической науке из-за исполняемой ею роли своего рода «светской церкви». Однако, независимо от формы, содержание науки в любом случае определяется экспериментом.
ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ЭКСПЕРИМЕНТА
До сих пор речь шла о том, что основные проблемы в науке вызваны иллюзией объективности. В следующих двух главах я опишу эксперименты, помогающие прояснить природу самого экспериментального исследования. В главе 6 я рассматриваю доктрину единообразия, которая настраивает ученых против неожиданных результатов и нарушений единообразия в природе. Даже неизменность «фундаментальных констант» оказывается вопросом веры. Как показывают реальные измерения, действительные значения этих констант непостоянны. При обработке результатов допускается поправка на случайную ошибку, что позволяет замаскировать изменения в количественных данных, скрывая имеющиеся расхождения. Я предлагаю способ, позволяющий эмпирически исследовать наблюдаемые колебания в значениях констант.
В главе 7 я рассматриваю влияние ожидаемого результата на проведение эксперимента. Ожидания исследователя могут оказывать на исследуемую систему едва ощутимое воздействие, которое, возможно, основано на каких-то паранормальных явлениях. В какой мере эксперимент сообщает нам объективные данные о природе, а в какой мере — отражает ожидания экспериментатора?
НЕПОСТОЯНСТВО «ФУНДАМЕНТАЛЬНЫХ КОНСТАНТ»
ФУНДАМЕНТАЛЬНЫЕ ФИЗИЧЕСКИЕ КОНСТАНТЫ И ИЗМЕРЕНИЯ ИХ ЗНАЧЕНИЙ
«Физические константы» представляют собой числа, которые ученые используют в своих вычислениях. В отличие от математических констант вроде числа π, значения констант различных природных явлений не могут быть вычислены чисто математически, а зависят от лабораторных измерений.
Как следует из самого их названия, так называемые физические константы должны иметь постоянное значение. Считается, что они отражают неизменность законов природы. В этой главе я намерен проследить, каким образом значения фундаментальных физических констант на практике изменялись в течение последних десятилетий, и высказать некоторые предположения по поводу исследования природы таких изменений.
В справочниках по физике и химии перечисляется множество различных постоянных — к примеру, точки плавления и кипения тысяч различных химических соединений, списки которых занимают сотни страниц. В частности, точка кипения этилового спирта в обычных условиях составляет плюс 78,5°С, а точка перехода в твердое состояние — минус 117,3°С. Но некоторые константы лежат в основе физических вычислений. Приведем список семи констант, которые считаются основными (таблица I)[227].
Таблица 1
ФУНДАМЕНТАЛЬНЫЕ КОНСТАНТЫ
Фундаментальная константа Символ
Скорость света в вакууме c
Элементарный электрический заряд e
Масса электрона mc
Масса протона mp
Число Авогадро NA
Постоянная Планка h
Гравитационная постоянная G
Постоянная Больцмана k
Все перечисленные константы выражаются в определенных единицах измерения. Например, скорость света в вакууме выражается в метрах в секунду. Если изменяется единица измерения, меняется и значение константы. Но единицы измерения вводятся человеком и зависят от конкретного содержания, заложенного в определение этой единицы. Это содержание может время от времени изменяться. В частности, в 1790 г. декретом Французской национальной ассамблеи метр был определен как одна десятимиллионная доля дуги земного меридиана, проходящего через Париж. На этой величине основывалась вся метрическая система, утвержденная особым законом. Позднее выяснилось, что первоначальные измерения длины меридиана оказались неточными. В 1799 г. было введено новое определение метра. За точку отсчета была принята длина эталонного стержня, который хранился во Франции под официальным надзором. В 1960 г. вводится очередное определение метра. Ему соответствовало определенное число длин волн, испускаемых атомами одного из изотопов криптона. Наконец, в 1983 г. метр был определен как расстояние, которое свет проходит в вакууме за 1/299 792 458 долю секунды.
Значение констант изменяется не только при выборе новых единиц измерения. Официально признанные значения фундаментальных констант корректируются и после того, как проводятся новые, более точные измерения. Эти значения постоянно уточняются экспертами и международными комиссиями. Старые значения констант заменяются новыми, основанными на самых последних «лучших показаниях», получаемых в расположенных по всему миру лабораториях. Далее я подробно рассмотрю четыре примера: гравитационную постоянную (G), скорость света в вакууме (с), постоянную Планка (h), а также постоянную тонкой структуры (α), значение которой выводится из заряда электрона (е), скорости света в вакууме и постоянной Планка.
«Лучшие» значения уже по определению являются результатом тщательного отбора. Во-первых, экспериментаторы склонны отбрасывать те данные, которые выходят за пределы ожидаемого интервала значений, считая их ошибочными. Во-вторых, после исключения подавляющего большинства отклоняющихся от нормы результатов различные значения, получаемые в конкретной лаборатории, сглаживаются за счет сопоставления с ранее полученными данными и выведения среднего показателя, в результате чего окончательное значение константы оказывается подверженным ряду коррекций, в достаточной степени произвольных. Наконец, результаты, полученные в лабораториях, расположенных в различных уголках Земли, тщательно отбираются, усредняются и затем выдаются в качестве официального значения данной константы.
Измерение фундаментальных констант — вотчина специалистов, называемых метрологами. В прошлом в этой области преобладали отдельные исследователи — к примеру, американский ученый Р.Т. Бердж из Калифорнийского университета в городе Беркли, который безраздельно господствовал в метрологии в 20—40-е гг. XX в. В наши дни окончательные величины физических констант устанавливаются международными комитетами и экспертами. Официальные величины этих констант зависят от целой серии решений, принимаемых самими экспериментаторами, ведущими специалистами в метрологии, членами специальных комитетов. Вот как Бердж описывает процесс определения константы:
«Каждый раз для каждой отдельно взятой константы решение по поводу ее наиболее вероятной величины требует определенного набора суждений. (...) При этом в ходе отбора данных и вывода окончательного заключения каждый исследователь руководствуется собственным набором суждений»[228].
ВЕРА В ВЕЧНЫЕ ИСТИНЫ
На практике значения физических констант со временем изменяются, но в теории все они считаются неизменными. Противоречия между теорией и практикой отметаются без какого-либо обсуждения — на том основании, что все различия между теоретическими и экспериментальными значениями физических констант появляются вследствие ошибок эксперимента, а поэтому значения, полученные в результате последних лабораторных опытов, считаются самыми точными. От прежних значений отказываются и со временем их забывают.
Что, если значения физических констант действительно изменяются? Возможно ли, что меняются сами основополагающие принципы природы? Перед тем как задуматься над этим вопросом, необходимо определиться с самым фундаментальным положением науки, какое нам известно, — с верой в единообразие природы. Для убежденного сторонника этой теории сама постановка вопроса звучит абсурдно: постоянные являются постоянными по определению.
Большинство физических констант измерены в одном только уголке Вселенной, и только в течение последних нескольких десятилетий, причем реальные результаты измерений непредсказуемым образом варьировались. Утверждение, что значения всех констант остаются постоянными независимо от места и времени измерения, не является экстраполяцией полученных результатов. Такая экстраполяция выглядела бы весьма странно. Значения констант, полученные в результате измерений на Земле, значительно изменились за последние пятьдесят лет, и у нас слишком мало доказательств, позволяющих утверждать, что нигде во Вселенной эти константы не менялись в течение последних 15 миллиардов лет. Сам факт, что такое предположение практически не обсуждается и принимается без доказательств, показывает, насколько в науке укоренилась вера в вечные истины.
В соответствии с традиционными научными воззрениями, в природе все управляется фиксированными законами и неизменными константами. Законы природы остаются одними и теми же в любое время и в любом месте. Строго говоря, это означает, что они находятся вне времени и пространства. В таком случае законы природы ближе к «идеям» в понимании Платона, чем к развивающейся материи. Они игнорируют материю, энергию, поля, пространство и время. Короче говоря, они не содержат в себе ничего. Они нематериальны и находятся вне физического существования. Так же как идеи Платона, они лежат в основе всех явлений в качестве скрытой причины, или «логоса», пребывающего вне времени и пространства.
Разумеется, каждый согласится, что законы природы в том виде, как они формулируются учеными, меняются со временем, поскольку старые теории частично или полностью заменяются новыми взглядами. Например, теория всемирного тяготения, выдвинутая Ньютоном, рассматривала силу, зависимую от расстояния, которая действовала в абсолютно неизменных и независимых друг от друга времени и пространстве. Затем на смену ей пришла теория Эйнштейна, в которой гравитационное поле состоит из связанной структуры искривленного пространства-времени. Но и Ньютон, и Эйнштейн разделяли веру Платона в то, что во всех естественных науках в основе сменяющих друг друга теорий лежат истинные вечные законы, универсальные и непреложные. Никто из них не сомневался в постоянстве констант, и во многом их всемирная слава обусловлена достижениями в этой области: Ньютон ввел в практику гравитационную постоянную, а Эйнштейн произвел расчеты, которые позволили объявить скорость света в вакууме — с — абсолютной константой. В современной теории относительности с является математической константой, параметром, равным отношению единиц пространства к единицам времени. Его значение является постоянным по определению. Вопрос о том, может ли скорость света в вакууме отличаться от значения с, теоретически иногда рассматривается, но всерьез никого не интересует.
Для основателей современной науки — Коперника, Кеплера, Галилея, Декарта и Ньютона — законы природы были неизменными Идеями в Божественном Разуме. Бог для этих ученых был своего рода математиком. Открытие математических законов природы представлялось непосредственным проникновением в сущность вечного Божественного Разума[229]. Такое отношение к законам природы встречается и у современных физиков[230].
К концу XVIII в. многие высокообразованные люди приняли новое мировоззрение, названное деизмом. Оно предполагает, что над миром стоит бесконечно удаленное, рациональное, математически точное божество, которое не смущает верующего живыми чертами библейского Бога. Это высшее существо познается человеческим разумом, не нуждающимся ни в Божественном откровении, ни в религиозных организациях. Божество деизма создало Вселенную, после чего уже не играет в ней активной роли: все происходит само по себе в соответствии с законами и константами природы. Эти законы, как свойства Божественного Разума, стали символами божества. Они были абсолютными, универсальными, неизменными и всемогущими. В начале XIX в. деизм постепенно стал уступать место атеизму. Как выразился французский физик Анри Лаплас, Бог стал «ненужной гипотезой». Вечность материи и энергии подтверждалась законами сохранения материи и энергии. Вечность законов природы и неизменность физических констант просто принимались без доказательств. Нематериальные математические принципы природы считались беспричинными, самостоятельными, сложившимися неким таинственным образом. По сути дела, они признавались только самими математиками.
Вплоть до 60-х гг. XX в. в ортодоксальной физике Вселенная все еще считалась вечной. Однако в течение нескольких десятилетий накапливались доказательства расширения Вселенной, а в 1965 г. открытие космического микроволнового фонового излучения в конце концов привело к грандиозному перевороту в космологии. Была принята теория Большого взрыва. На смену вечной машиноподобной Вселенной, постепенно приближающейся к термодинамической тепловой смерти, пришла модель растущего, развивающегося, эволюционирующего космоса. Если некогда произошло рождение космоса (первоначальная «сингулярность», как выражаются физики), вновь появляются прежние вопросы. Откуда и из чего появилось все, что находится вокруг нас? Почему Вселенная такова, какова она есть? Появляется и новый вопрос: если сама природа эволюционирует, почему вместе с ней не могут эволюционировать и ее законы? Если законы описывают изменяющуюся природу, они должны изменяться вместе с ней. Большинство физиков продолжают следовать традиционному подходу Платона. Законы не рождаются самим эволюционирующим космосом, а вводятся для его описания. Они присутствуют изначально, как своего рода космический «кодекс Наполеона». Каким-то образом из вечной, нефизической, чисто умозрительной области — из разума математического божества, а то и просто из некоего самосущего царства математики — в первичном взрыве из пустоты появляется Вселенная. Вот как описывает это физик Хайнц Пагельс:
«Полное отсутствие чего-либо "перед" образованием Вселенной — это самая абсолютная пустота, какую мы только можем себе представить: не существует ни пространства, ни времени, ни материи. Это мир без места, без длительности и вечности, без какой бы то ни было размерности — одним словом, то, что математики называют "пустым множеством". И все-таки эта невообразимая пустота преобразуется в пространство, заполненное веществом, — как необходимое следствие физических законов. Где же хранились эти законы, пока была пустота? Что "сообщило" пустоте, что она хранит в себе потенциальную Вселенную? Получается, что даже пустота подчиняется закону, некой логике, существовавшей еще до того, как появились пространство и время»[231].
Пытаясь создать математическую теорию окружающего мира, современные ученые признают эволюционную космологию, но в то же время сохраняют традиционную веру в вечность законов природы и инвариантность фундаментальных констант. Таким образом получается, что эти законы каким-то образом уже присутствовали в мире еще до первоначальной сингулярности — или, вернее, они вообще существуют вне времени и пространства. Тем не менее вопросы остаются. Почему эти законы существуют именно в таком виде, а не в каком-либо ином? Почему фундаментальные константы имеют именно те значения, которые мы им приписываем?
В настоящее время подобные вопросы обычно рассматриваются с точки зрения антропного принципа: из всех возможных вариантов Вселенной только один, именно с тем набором величин, которые мы определили в настоящее время, мог породить мир, населенный живыми существами, и привести к появлению разума, позволяющего специалистам по космологии обсуждать эти проблемы. Если бы значения фундаментальных констант были иными, вполне возможно, что не было бы ни звезд, ни планет, ни людей. Даже при самом малом изменении численных значений этих констант нас могло бы вообще не быть. Например, при малейшем изменении соотношения ядерных и электромагнитных сил образование атомов углерода могло оказаться невозможным, но тогда не было бы и органических форм жизни, а следовательно, и нас с вами. «"Священный Грааль" современной физики — объяснение, почему числовые значения этих констант (...) именно таковы, каковы они есть»[232].
Некоторые физики склоняются к своего рода неодеизму со стоящим в начале мира математическим божеством, которое точно подобрало значения фундаментальных констант таким образом, чтобы из всех возможных вариантов реализовалась именно наша Вселенная, в которой мы смогли развиваться. Другие предпочитают вообще исключить любое божество. Одна из теорий, исключающих необходимость вмешательства со стороны некоего математического разума, задавшего численные значения фундаментальных констант, — предположение, что наша Вселенная была лишь частью «пены» потенциальных вселенных. Первоначальный «пузырек», из которого она выросла, был одним из многих, но при этом она должна была иметь собственные константы, что и подтверждается самим фактом нашего существования. Каким-то образом наше существование стало возможно благодаря некоему отбору. Допускается существование бесчисленного множества еще не известных нам чужеродных и безжизненных вселенных, но имеется всего одна, которую мы можем познать.
Еще дальше в таких предположениях продвинулся Ли Смолин, который выдвинул своего рода концепцию космического дарвинизма. Через черные дыры новорожденные вселенные могут отпочковываться от ранее существовавших вселенных и продолжать существование уже самостоятельно. Некоторые из этих вселенных могут претерпевать определенные мутации в области численных значений фундаментальных констант и потому изменять схему развития. Только те из них, которые могут образовывать звезды, способны создавать черные дыры и поэтому давать жизнь новым вселенным. Таким образом, с точки зрения космического «плодородия», только вселенные, подобные нашей, являются репродуктивными, и потому возможно существование множества более или менее сходных между собой обитаемых вселенных[233]. Однако эта умозрительная теория не объясняет, почему какие-либо вселенные в принципе должны существовать, чем именно определяются управляющие ими законы, что именно сохраняет, содержит в себе и запоминает мутировавшие константы в отдельно взятой вселенной.
Примечательно, что все эти на первый взгляд чрезвычайно смелые рассуждения остаются вполне традиционными в том отношении, что без каких-либо доказательств признают существование вечных законов и неизменность фундаментальных констант — по крайней мере, в пределах данной конкретной вселенной. Эти устоявшиеся допущения рассматривают постоянство числовых значений фундаментальных констант как изначальную истину. Неизменность констант становится разновидностью веры, основанной на философии Платона и теологии. Тем не менее этот тезис до сих пор остается недоказанным. Официальные значения констант изменялись даже в течение нескольких последних десятилетий. Все попытки измерить эти константы с использованием различных астрономических методов основывались все на том же устойчивом предположении, что численные размеры констант уже заданы, то есть на концепции универсального постоянства природы. Далее я попытаюсь продемонстрировать, что такие представления о физических константах в той или иной степени основываются на одних и тех же, раз за разом повторяемых аргументах. Тем не менее «неисправленные» эмпирические данные имеют мало общего с воззрениями убежденных ортодоксов, и, если измерения показывают отклонение от ожидаемой величины константы, что бывает не так уж редко, результаты считаются ошибкой эксперимента. Самые последние результаты считаются наиболее близкими к «истинному» значению той или иной константы.
Некоторые отклонения в определяемом экспериментальном значении действительно могут быть следствием ошибок, и такие ошибки сводят на нет все улучшения в методах измерения и все усовершенствования приборов. Кроме того, все измерения имеют свои ограничения точности. Но не все отклонения в измеренных численных значениях фундаментальных констант являются следствием неизбежных ошибок или ограниченной точности использованной аппаратуры. Могут быть и вполне реальные отклонения. В эволюционирующей вселенной можно вполне обоснованно предположить эволюцию фундаментальных констант. И эти изменения численных значений констант могут оказаться не только хаотическими, но и циклическими.
ТЕОРИИ ИЗМЕНЯЮЩИХСЯ «ФУНДАМЕНТАЛЬНЫХ КОНСТАНТ»
Несколько физиков — к примеру, Артур Эддингтон и Поль Дирак — после долгих размышлений пришли к выводу, что по крайней мере некоторые из «фундаментальных констант» могут со временем изменять свои значения. В частности, Дирак высказал предположение, что численное значение гравитационной постоянной (G) может со временем уменьшаться, так как по мере расширения Вселенной уменьшается сила тяжести[234]. Однако все, кто высказывает подобные предположения, обычно спешат добавить, что ничуть не сомневаются в постоянстве законов природы, а лишь предполагают, что эти вечные законы управляют изменением констант.
Более радикальная гипотеза состоит в том, что эволюционируют сами законы. Философ Альфред Норт Уайтхед подчеркивает, что, если отбросить идею Платона об управляющих природой законах и рассмотреть сами природные закономерности, напрашивается вывод, что они непременно должны эволюционировать вместе с природой:
«Поскольку законы природы зависят от отдельных характеристик составляющих ее объектов, изменения этих объектов неизбежно должны повлечь за собой изменения законов. Таким образом, современный эволюционный образ физической Вселенной должен включать законы природы, которые изменяются синхронно с объектами, составляющими окружающий мир. Поэтому концепция Вселенной как эволюционирующего субъекта с неизменными вечными законами должна быть отброшена»[235]. Я предпочитаю вообще избегать термина «закон», предполагающего образ божества как некоего верховного законодателя. Более близкой к истине мне представляется идея, что упорядоченность природы подобна привычке или обычаю. Гипотеза морфического резонанса предполагает, что природе присуща совокупная память. Природа не находится под воздействием некоего внешнего математического разума, а руководствуется привычками, подчиняющимися принципу естественного отбора[236]. При этом некоторые обычаи устойчивее других. К примеру, привычные природе структуры атомов водорода по своему происхождению чрезвычайно древние и имеют широчайшее распространение во всех уголках Вселенной — а привычный образ гиены таковым не является. Гравитационное и электромагнитное поля, атомы, галактики и звезды управляются древнейшими обычаями, возникшими в самый ранний период истории Вселенной. С этой точки зрения «фундаментальные константы» являются количественным выражением глубоко укоренившихся обычаев. На начальных стадиях они могли меняться, но после многократных повторений все более и более приближались к некоему фиксированному значению, и в конце концов их численное значение могло стать более или менее постоянным. В этом отношении гипотеза обычая или привычки находится в согласии с общепринятым допущением о постоянстве констант, хотя объясняет это постоянство совершенно иначе.
Даже если отбросить идею эволюции фундаментальных констант, останутся по крайней мере две причины, по которым возможно изменение их численных значений. Во-первых, эти значения могут зависеть от астрономического окружения, которое изменяется при движении Солнца внутри галактики и по мере удаления самой нашей галактики от всех остальных. Во-вторых, значения констант могут колебаться или флуктуировать. Возможно даже, что флуктуации происходят в хаотическом режиме. Современная теория хаоса дала возможность отойти от устаревшего детерминизма и осознать, что хаотическое движение в большинстве областей природы — явление вполне обычное[237]. С самого зарождения физики и до сих пор — под влиянием глубоко укоренившегося платонизма — константы оставались неизменными. Но что, если эти константы неупорядоченным образом изменяются?
Специалисты по метрологии вовсе не отметают гипотезу о том, что фундаментальные постоянные в ходе миллионов лет могут хотя бы в незначительной степени изменяться. Предпринимались различные попытки оценить эти возможные изменения каким-либо косвенным методом — к примеру, путем сравнения световых волн, приходящих к нам от относительно близких галактик и звезд, со световыми волнами от объектов, расположенных на расстоянии многих миллионов, а то и миллиардов световых лет. В основе таких методов лежит предположение, что систематические изменения численных значений фундаментальных констант, даже если они существуют, должны быть очень незначительными. Но проблема в том, что косвенные методы оценки зависят от многих допущений, влияние которых невозможно оценить непосредственно. Косвенное доказательство постоянства фундаментальных констант в той или иной мере опирается на одни и те же аргументы. Более подробно я рассмотрю это доказательство, когда речь пойдет о каждой из рассматриваемых констант.
Даже если средние значения констант окажутся устойчивыми в течение длительного времени, конкретные значения могут отклоняться от средней величины в результате изменений во внеземном пространстве или вследствие хаотических флуктуации. Каковы же реальные факты?
НЕУСТОЙЧИВОСТЬ ГРАВИТАЦИОННОЙ ПОСТОЯННОЙ
Гравитационная постоянная (G) впервые появилась в выведенном Ньютоном уравнении силы тяжести, в соответствии с которым сила гравитационного взаимодействия двух тел равна отношению умноженного на нее произведения масс этих взаимодействующих тел к квадрату расстояния между ними. Значение этой константы многократно измерялось с тех пор, как в 1798 г. было впервые определено в точном эксперименте Генри Кавендишем. «Лучшие» результаты измерений за последние 100 лет отображены на ил. 13.
В начальной стадии измерений наблюдался значительный разброс результатов, а затем прослеживается хорошая сходимость получаемых данных. Тем не менее даже после 1970 г. «лучшие» результаты колеблются в диапазоне от 6,6699 до 6,6745, то есть разброс составляет 0,07%[238]. (Единицы, в которых выражается значение гравитационной постоянной, имеют вид ×10-11 м3 кг-1с-2 .)
Из всех известных фундаментальных констант именно численное значение гравитационной постоянной определено с наименьшей точностью, хотя важность этой величины трудно переоценить. Все попытки прояснить точное значение этой константы не увенчались успехом, а все измерения так и остались в слишком большом диапазоне возможных значений. Тот факт, что точность численного значения гравитационной постоянной до сих пор не превышает 1/5000, редактор журнала «Нейчур» определил как «пятно позора на лице физики»[239]. В последние годы неопределенность действительно была так велика, что для объяснения гравитационных аномалий даже вводились совершенно новые силы.
В начале 80-х гг. Фрэнк Стейси со своими коллегами измерял эту константу в глубоких шахтах и скважинах Австралии, и полученное им значение оказалось примерно на 1% выше официального значения, принятого в настоящее время. Например, в серии экспериментов, проведенных в Квинсленде, в шахте Хилтон, было обнаружено, что значение гравитационной постоянной находится в пределах 6,734 ± 0,002, в то время как официально признанное значение составляет 6,672 ± 0,003[240]. Результаты исследователей в Австралии были воспроизводимы и хорошо согласовывались друг с другом[241], но вплоть до 1986 г. на них практически не обращали внимания.
Затем Эфрейн Фишбах из университета Вашингтона (Сиэтл) вызвал шок среди ученых, заявив, что его лабораторные измерения также показали небольшое отклонение от закона всемирного тяготения по Ньютону, причем полученные результаты хорошо согласовывались с данными австралийских ученых. Фишбах провел повторный анализ результатов, в 20-е гг. полученных Роландом Эотвесом и всегда считавшихся наглядным примером точных измерений. Он обнаружил, что в классических опытах отмечалась аналогичная аномалия в некоторых данных, которые затем были сочтены случайной ошибкой[242]. На основе этих лабораторных испытаний и наблюдений в австралийских шахтах Фишбах предположил, что существует до тех пор неизвестная сила отталкивания, так называемая «пятая сила» (четырьмя известными взаимодействиями были сильное, слабое, электромагнитное и гравитационное).
Дальнейшие тщательные измерения гравитационной постоянной, которые проводились в сверхглубоких скважинах, пробуренных в арктической полярной шапке, а также на значительных высотах, представили дополнительные свидетельства существования «пятой силы»[243].
Ил. 13. Лучшие измерения значения гравитационной постоянной (G) с 1888 по 1989 гг.
Интерпретация полученных результатов зависела от того, каким образом учитывалось влияние геологических условий эксперимента, так как плотность окружающих скал воздействовала на измеряемую величину силы тяжести. Экспериментаторы были хорошо осведомлены об этом обстоятельстве и ввели в свои измерения соответствующие поправки. Скептики тем не менее утверждали, что поблизости могли находиться не учтенные экспериментаторами скалы необычайно высокой плотности, и необычную величину гравитационной постоянной определило именно воздействие этих скальных пород[244]. До настоящего времени такая точка зрения преобладает, хотя вопрос о существовании «пятой силы» по-прежнему открыт. Эта тема остается предметом теоретических и экспериментальных изысканий[245].
Возможное существование «пятой силы» практически не влияет на изменения гравитационной постоянной во времени. Однако сам факт, что в конце двадцатого столетия серьезно обсуждался вопрос о некой дополнительной силе, воздействующей на гравитацию, свидетельствует о том, что теория гравитации не слишком продвинулась вперед за три столетия после публикации «Начала» Ньютона.
Предположение Поля Дирака и других физиков-теоретиков о том, что гравитационная постоянная может уменьшаться по мере расширения Вселенной, было воспринято некоторыми специалистами в метрологии достаточно серьезно. Однако предполагаемое Дираком изменение было весьма незначительным — приблизительно 5/(1011) в год. Такое изменение нельзя подтвердить существующими на сегодняшний день методами проводимых на Земле измерений, так как «лучшие» результаты, полученные за последние двадцать лет, отличаются друг от друга более чем на 0,0005. Иными словами, предполагаемое изменение меньше разницы в существующих «лучших» результатах примерно в десять миллионов раз.
Для проверки предложенной Дираком гипотезы были опробованы различные косвенные методы. Одни из этих методов основывались на геологических данных — к примеру, на измерении угла наклона ископаемых песчаных дюн, по которому можно было вычислить силу тяжести, воздействующую в период образования этих дюн. В других методах использовались данные о затмениях за последние 3000 лет. При некоторых способах проверки применялись новейшие астрономические методы. В ходе одного из экспериментов, проводимых в рамках космической программы, через равные промежутки времени измерялось расстояние до Луны. При этом использовался радар усложненной конструкции, которая позволила установить решетку с отражателями прямо на лунную поверхность. Время прохождения лазерных импульсов — от момента пуска до регистрации телескопом — измерялось через равные промежутки времени. Более точный эксперимент с использованием радара удалось провести благодаря полету «Викинга» к Марсу: импульсы к Земле посылались с поверхности Марса спускаемым аппаратом. Эти измерения продолжались с 1976 по 1982 гг. Если предположить, что скорость света в вакууме остается постоянной, радарные методы позволяют определять расстояние от Марса до Земли с точностью в несколько метров. Полученные данные вводились в сложные математические модели орбит различных тел в Солнечной системе, в результате чего уточнялось их соответствие установленному значению гравитационной постоянной. Однако такие вычисления допускали множество неопределенностей, включая предположения о воздействии на орбиту Марса крупных астероидов с неизвестной массой. Один вариант вычислений дал результаты, подтверждающие изменения гравитационной постоянной на 0,2/(1011) в год[246]. Другой метод вычислений, в котором использовались те же самые данные, дал результат, на порядок превышавший предыдущий, но и он был ниже 1/(1010 ) в год[247].
Еще один астрономический метод заключался в изучении динамики расстояния между объектами в двойном пульсаре. Уточнялось, действительно ли гравитационная постоянная за время наблюдений сохраняет неизменную величину. Но и в этом случае при вычислениях использовалось слишком много предположений, что делает результаты исследования недостоверными для любого, кто захотел бы повторить эксперимент, изменив принятые допущения[248].
Некоторые физики считают, что по крайней мере часть имеющихся данных указывает на незначительные изменения гравитационной постоянной во времени[249]. На основе данных, полученных в экспериментах с Луной, часть ученых пришла к заключению, что гравитационная постоянная может меняться по меньшей мере в такой степени, как предполагал Дирак[250], однако другие с этим не согласны[251]. Патриарх британской метрологии Брайан Петли интерпретировал все эти исследования следующим образом:
«Если считать достоверными космологические измерения времени и полагать, что мы обладаем достаточным пониманием гравитации, то изменения гравитационной постоянной составят менее 1/иок>) в год. Этот вывод подтверждается рядом различных доказательств, часть которых получена в кратковременных экспериментах. Если считать изменения, предсказанные Дираком, неверными, остается признать, что флуктуации значений гравитационной постоянной либо зависят от времени в крайне незначительной степени, либо имеют циклический характер, причем в настоящее время эти изменения особенно незначительны»[252].
Со всеми этими косвенными доказательствами проблема в том, что все они зависят от сложной цепи теоретических предположений, включая гипотезу о постоянстве других физических констант. Они остаются убедительными только в рамках принятой системы воззрений. Если считать достоверными современные космологические теории, сами по себе предполагающие неизменность гравитационной постоянной G, то данные становятся внутренне согласованными только при условии, что все изменения от эксперимента к эксперименту или от метода к методу мы будем считать результатом ошибки.
УМЕНЬШЕНИЕ СКОРОСТИ СВЕТА В ВАКУУМЕ С 1928 по 1945 ГГ.
В соответствии с теорией относительности Эйнштейна скорость света в вакууме инвариантна: она является абсолютной константой. Большинство современных физических теорий основывается именно на этом постулате. Поэтому существует стойкое теоретическое предубеждение против того, чтобы рассматривать вопрос о возможном изменении скорости света в вакууме. В любом случае вопрос этот в настоящее время официально признан закрытым. С 1972 г. скорость света в вакууме была объявлена постоянной по определению и теперь считается равной 299792,458 ± 0,0012 к/с.
Так же как и в случае с гравитационной постоянной, прежние измерения этой константы значительно отличались от современной, официально признанной величины. К примеру, в 1676 г. Ремер вывел величину, которая была на 30% ниже современной, а полученные в 1849 г. результаты Физо были на 5% выше[253]. Изменение «лучших» результатов измерения скорости света в вакууме с 1874 г. по наши дни приводится на ил. 14. На первый взгляд кажется, что перед нами еще один блестящий пример повышения точности измерений, а результаты все более и более приближаются к истинному значению. Но имеющиеся факты говорят о том, что ситуация несколько сложнее.
В 1929 г. Бердж опубликовал свой обзор всех доступных на тот момент результатов измерений скорости света в вакууме и пришел к заключению, что наиболее точное значение этой константы равно 299796 ± 4 км/с. Он указал, что вероятная ошибка в данном случае гораздо меньше, чем при измерении численных значений других фундаментальных констант, и пришел к заключению, что «приводимая величина скорости света в вакууме является вполне удовлетворительной и ее можно считать более или менее окончательно установленной»[254]. Однако уже к тому времени, когда был сделан этот вывод, было получено значительно меньшее значение этой константы, а в 1934 г. Дж.Г. де Брей предположил, что существуют данные, указывающие на циклические изменения скорости света в вакууме[255].
Ил. 14. Лучшие результаты измерений скорости света в вакууме с 18743 по 1972 гг.